Proof of Theorem 3wlkdlem10
| Step | Hyp | Ref
| Expression |
| 1 | | 3wlkd.p |
. . . 4
⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 |
| 2 | | 3wlkd.f |
. . . 4
⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 |
| 3 | | 3wlkd.s |
. . . 4
⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
| 4 | | 3wlkd.n |
. . . 4
⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) |
| 5 | | 3wlkd.e |
. . . 4
⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) |
| 6 | 1, 2, 3, 4, 5 | 3wlkdlem9 27028 |
. . 3
⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ∧ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2)))) |
| 7 | 1, 2, 3 | 3wlkdlem3 27021 |
. . . 4
⊢ (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷))) |
| 8 | | preq12 4270 |
. . . . . . 7
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → {(𝑃‘0), (𝑃‘1)} = {𝐴, 𝐵}) |
| 9 | 8 | adantr 481 |
. . . . . 6
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → {(𝑃‘0), (𝑃‘1)} = {𝐴, 𝐵}) |
| 10 | 9 | sseq1d 3632 |
. . . . 5
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ↔ {𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)))) |
| 11 | | simplr 792 |
. . . . . . 7
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘1) = 𝐵) |
| 12 | | simprl 794 |
. . . . . . 7
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘2) = 𝐶) |
| 13 | 11, 12 | preq12d 4276 |
. . . . . 6
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶}) |
| 14 | 13 | sseq1d 3632 |
. . . . 5
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ↔ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)))) |
| 15 | | preq12 4270 |
. . . . . . 7
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → {(𝑃‘2), (𝑃‘3)} = {𝐶, 𝐷}) |
| 16 | 15 | adantl 482 |
. . . . . 6
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → {(𝑃‘2), (𝑃‘3)} = {𝐶, 𝐷}) |
| 17 | 16 | sseq1d 3632 |
. . . . 5
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2)) ↔ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2)))) |
| 18 | 10, 14, 17 | 3anbi123d 1399 |
. . . 4
⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2))) ↔ ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ∧ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2))))) |
| 19 | 7, 18 | syl 17 |
. . 3
⊢ (𝜑 → (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2))) ↔ ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ∧ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2))))) |
| 20 | 6, 19 | mpbird 247 |
. 2
⊢ (𝜑 → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2)))) |
| 21 | 1, 2 | 3wlkdlem2 27020 |
. . . 4
⊢
(0..^(#‘𝐹)) =
{0, 1, 2} |
| 22 | 21 | raleqi 3142 |
. . 3
⊢
(∀𝑘 ∈
(0..^(#‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) ↔ ∀𝑘 ∈ {0, 1, 2} {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) |
| 23 | | c0ex 10034 |
. . . 4
⊢ 0 ∈
V |
| 24 | | 1ex 10035 |
. . . 4
⊢ 1 ∈
V |
| 25 | | 2ex 11092 |
. . . 4
⊢ 2 ∈
V |
| 26 | | fveq2 6191 |
. . . . . 6
⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) |
| 27 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑘 = 0 → (𝑘 + 1) = (0 + 1)) |
| 28 | | 0p1e1 11132 |
. . . . . . . 8
⊢ (0 + 1) =
1 |
| 29 | 27, 28 | syl6eq 2672 |
. . . . . . 7
⊢ (𝑘 = 0 → (𝑘 + 1) = 1) |
| 30 | 29 | fveq2d 6195 |
. . . . . 6
⊢ (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1)) |
| 31 | 26, 30 | preq12d 4276 |
. . . . 5
⊢ (𝑘 = 0 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)}) |
| 32 | | fveq2 6191 |
. . . . . 6
⊢ (𝑘 = 0 → (𝐹‘𝑘) = (𝐹‘0)) |
| 33 | 32 | fveq2d 6195 |
. . . . 5
⊢ (𝑘 = 0 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘0))) |
| 34 | 31, 33 | sseq12d 3634 |
. . . 4
⊢ (𝑘 = 0 → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))) |
| 35 | | fveq2 6191 |
. . . . . 6
⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) |
| 36 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑘 = 1 → (𝑘 + 1) = (1 + 1)) |
| 37 | | 1p1e2 11134 |
. . . . . . . 8
⊢ (1 + 1) =
2 |
| 38 | 36, 37 | syl6eq 2672 |
. . . . . . 7
⊢ (𝑘 = 1 → (𝑘 + 1) = 2) |
| 39 | 38 | fveq2d 6195 |
. . . . . 6
⊢ (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2)) |
| 40 | 35, 39 | preq12d 4276 |
. . . . 5
⊢ (𝑘 = 1 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)}) |
| 41 | | fveq2 6191 |
. . . . . 6
⊢ (𝑘 = 1 → (𝐹‘𝑘) = (𝐹‘1)) |
| 42 | 41 | fveq2d 6195 |
. . . . 5
⊢ (𝑘 = 1 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘1))) |
| 43 | 40, 42 | sseq12d 3634 |
. . . 4
⊢ (𝑘 = 1 → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) ↔ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)))) |
| 44 | | fveq2 6191 |
. . . . . 6
⊢ (𝑘 = 2 → (𝑃‘𝑘) = (𝑃‘2)) |
| 45 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑘 = 2 → (𝑘 + 1) = (2 + 1)) |
| 46 | | 2p1e3 11151 |
. . . . . . . 8
⊢ (2 + 1) =
3 |
| 47 | 45, 46 | syl6eq 2672 |
. . . . . . 7
⊢ (𝑘 = 2 → (𝑘 + 1) = 3) |
| 48 | 47 | fveq2d 6195 |
. . . . . 6
⊢ (𝑘 = 2 → (𝑃‘(𝑘 + 1)) = (𝑃‘3)) |
| 49 | 44, 48 | preq12d 4276 |
. . . . 5
⊢ (𝑘 = 2 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘2), (𝑃‘3)}) |
| 50 | | fveq2 6191 |
. . . . . 6
⊢ (𝑘 = 2 → (𝐹‘𝑘) = (𝐹‘2)) |
| 51 | 50 | fveq2d 6195 |
. . . . 5
⊢ (𝑘 = 2 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘2))) |
| 52 | 49, 51 | sseq12d 3634 |
. . . 4
⊢ (𝑘 = 2 → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) ↔ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2)))) |
| 53 | 23, 24, 25, 34, 43, 52 | raltp 4240 |
. . 3
⊢
(∀𝑘 ∈
{0, 1, 2} {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) ↔ ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2)))) |
| 54 | 22, 53 | bitri 264 |
. 2
⊢
(∀𝑘 ∈
(0..^(#‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) ↔ ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2)))) |
| 55 | 20, 54 | sylibr 224 |
1
⊢ (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) |