MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem10 Structured version   Visualization version   Unicode version

Theorem 3wlkdlem10 27029
Description: Lemma 10 for 3wlkd 27030. (Contributed by Alexander van der Vekens, 12-Nov-2017.) (Revised by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p  |-  P  = 
<" A B C D ">
3wlkd.f  |-  F  = 
<" J K L ">
3wlkd.s  |-  ( ph  ->  ( ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
) )
3wlkd.n  |-  ( ph  ->  ( ( A  =/= 
B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )
3wlkd.e  |-  ( ph  ->  ( { A ,  B }  C_  ( I `
 J )  /\  { B ,  C }  C_  ( I `  K
)  /\  { C ,  D }  C_  (
I `  L )
) )
Assertion
Ref Expression
3wlkdlem10  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )
Distinct variable groups:    A, k    B, k    C, k    D, k   
k, J    k, K    k, L    k, V    k, F    P, k    k, I
Allowed substitution hint:    ph( k)

Proof of Theorem 3wlkdlem10
StepHypRef Expression
1 3wlkd.p . . . 4  |-  P  = 
<" A B C D ">
2 3wlkd.f . . . 4  |-  F  = 
<" J K L ">
3 3wlkd.s . . . 4  |-  ( ph  ->  ( ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
) )
4 3wlkd.n . . . 4  |-  ( ph  ->  ( ( A  =/= 
B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )
5 3wlkd.e . . . 4  |-  ( ph  ->  ( { A ,  B }  C_  ( I `
 J )  /\  { B ,  C }  C_  ( I `  K
)  /\  { C ,  D }  C_  (
I `  L )
) )
61, 2, 3, 4, 53wlkdlem9 27028 . . 3  |-  ( ph  ->  ( { A ,  B }  C_  ( I `
 ( F ` 
0 ) )  /\  { B ,  C }  C_  ( I `  ( F `  1 )
)  /\  { C ,  D }  C_  (
I `  ( F `  2 ) ) ) )
71, 2, 33wlkdlem3 27021 . . . 4  |-  ( ph  ->  ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) ) )
8 preq12 4270 . . . . . . 7  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B )  ->  { ( P ` 
0 ) ,  ( P `  1 ) }  =  { A ,  B } )
98adantr 481 . . . . . 6  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  ->  { ( P ` 
0 ) ,  ( P `  1 ) }  =  { A ,  B } )
109sseq1d 3632 . . . . 5  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( { ( P `
 0 ) ,  ( P `  1
) }  C_  (
I `  ( F `  0 ) )  <->  { A ,  B }  C_  ( I `  ( F `  0 )
) ) )
11 simplr 792 . . . . . . 7  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( P `  1
)  =  B )
12 simprl 794 . . . . . . 7  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( P `  2
)  =  C )
1311, 12preq12d 4276 . . . . . 6  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  ->  { ( P ` 
1 ) ,  ( P `  2 ) }  =  { B ,  C } )
1413sseq1d 3632 . . . . 5  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( { ( P `
 1 ) ,  ( P `  2
) }  C_  (
I `  ( F `  1 ) )  <->  { B ,  C }  C_  ( I `  ( F `  1 )
) ) )
15 preq12 4270 . . . . . . 7  |-  ( ( ( P `  2
)  =  C  /\  ( P `  3 )  =  D )  ->  { ( P ` 
2 ) ,  ( P `  3 ) }  =  { C ,  D } )
1615adantl 482 . . . . . 6  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  ->  { ( P ` 
2 ) ,  ( P `  3 ) }  =  { C ,  D } )
1716sseq1d 3632 . . . . 5  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( { ( P `
 2 ) ,  ( P `  3
) }  C_  (
I `  ( F `  2 ) )  <->  { C ,  D }  C_  ( I `  ( F `  2 )
) ) )
1810, 14, 173anbi123d 1399 . . . 4  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( ( { ( P `  0 ) ,  ( P ` 
1 ) }  C_  ( I `  ( F `  0 )
)  /\  { ( P `  1 ) ,  ( P ` 
2 ) }  C_  ( I `  ( F `  1 )
)  /\  { ( P `  2 ) ,  ( P ` 
3 ) }  C_  ( I `  ( F `  2 )
) )  <->  ( { A ,  B }  C_  ( I `  ( F `  0 )
)  /\  { B ,  C }  C_  (
I `  ( F `  1 ) )  /\  { C ,  D }  C_  ( I `
 ( F ` 
2 ) ) ) ) )
197, 18syl 17 . . 3  |-  ( ph  ->  ( ( { ( P `  0 ) ,  ( P ` 
1 ) }  C_  ( I `  ( F `  0 )
)  /\  { ( P `  1 ) ,  ( P ` 
2 ) }  C_  ( I `  ( F `  1 )
)  /\  { ( P `  2 ) ,  ( P ` 
3 ) }  C_  ( I `  ( F `  2 )
) )  <->  ( { A ,  B }  C_  ( I `  ( F `  0 )
)  /\  { B ,  C }  C_  (
I `  ( F `  1 ) )  /\  { C ,  D }  C_  ( I `
 ( F ` 
2 ) ) ) ) )
206, 19mpbird 247 . 2  |-  ( ph  ->  ( { ( P `
 0 ) ,  ( P `  1
) }  C_  (
I `  ( F `  0 ) )  /\  { ( P `
 1 ) ,  ( P `  2
) }  C_  (
I `  ( F `  1 ) )  /\  { ( P `
 2 ) ,  ( P `  3
) }  C_  (
I `  ( F `  2 ) ) ) )
211, 23wlkdlem2 27020 . . . 4  |-  ( 0..^ ( # `  F
) )  =  {
0 ,  1 ,  2 }
2221raleqi 3142 . . 3  |-  ( A. k  e.  ( 0..^ ( # `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
)  <->  A. k  e.  {
0 ,  1 ,  2 }  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )
23 c0ex 10034 . . . 4  |-  0  e.  _V
24 1ex 10035 . . . 4  |-  1  e.  _V
25 2ex 11092 . . . 4  |-  2  e.  _V
26 fveq2 6191 . . . . . 6  |-  ( k  =  0  ->  ( P `  k )  =  ( P ` 
0 ) )
27 oveq1 6657 . . . . . . . 8  |-  ( k  =  0  ->  (
k  +  1 )  =  ( 0  +  1 ) )
28 0p1e1 11132 . . . . . . . 8  |-  ( 0  +  1 )  =  1
2927, 28syl6eq 2672 . . . . . . 7  |-  ( k  =  0  ->  (
k  +  1 )  =  1 )
3029fveq2d 6195 . . . . . 6  |-  ( k  =  0  ->  ( P `  ( k  +  1 ) )  =  ( P ` 
1 ) )
3126, 30preq12d 4276 . . . . 5  |-  ( k  =  0  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  =  { ( P ` 
0 ) ,  ( P `  1 ) } )
32 fveq2 6191 . . . . . 6  |-  ( k  =  0  ->  ( F `  k )  =  ( F ` 
0 ) )
3332fveq2d 6195 . . . . 5  |-  ( k  =  0  ->  (
I `  ( F `  k ) )  =  ( I `  ( F `  0 )
) )
3431, 33sseq12d 3634 . . . 4  |-  ( k  =  0  ->  ( { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) )  <->  { ( P `  0 ) ,  ( P ` 
1 ) }  C_  ( I `  ( F `  0 )
) ) )
35 fveq2 6191 . . . . . 6  |-  ( k  =  1  ->  ( P `  k )  =  ( P ` 
1 ) )
36 oveq1 6657 . . . . . . . 8  |-  ( k  =  1  ->  (
k  +  1 )  =  ( 1  +  1 ) )
37 1p1e2 11134 . . . . . . . 8  |-  ( 1  +  1 )  =  2
3836, 37syl6eq 2672 . . . . . . 7  |-  ( k  =  1  ->  (
k  +  1 )  =  2 )
3938fveq2d 6195 . . . . . 6  |-  ( k  =  1  ->  ( P `  ( k  +  1 ) )  =  ( P ` 
2 ) )
4035, 39preq12d 4276 . . . . 5  |-  ( k  =  1  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  =  { ( P ` 
1 ) ,  ( P `  2 ) } )
41 fveq2 6191 . . . . . 6  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
4241fveq2d 6195 . . . . 5  |-  ( k  =  1  ->  (
I `  ( F `  k ) )  =  ( I `  ( F `  1 )
) )
4340, 42sseq12d 3634 . . . 4  |-  ( k  =  1  ->  ( { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) )  <->  { ( P `  1 ) ,  ( P ` 
2 ) }  C_  ( I `  ( F `  1 )
) ) )
44 fveq2 6191 . . . . . 6  |-  ( k  =  2  ->  ( P `  k )  =  ( P ` 
2 ) )
45 oveq1 6657 . . . . . . . 8  |-  ( k  =  2  ->  (
k  +  1 )  =  ( 2  +  1 ) )
46 2p1e3 11151 . . . . . . . 8  |-  ( 2  +  1 )  =  3
4745, 46syl6eq 2672 . . . . . . 7  |-  ( k  =  2  ->  (
k  +  1 )  =  3 )
4847fveq2d 6195 . . . . . 6  |-  ( k  =  2  ->  ( P `  ( k  +  1 ) )  =  ( P ` 
3 ) )
4944, 48preq12d 4276 . . . . 5  |-  ( k  =  2  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  =  { ( P ` 
2 ) ,  ( P `  3 ) } )
50 fveq2 6191 . . . . . 6  |-  ( k  =  2  ->  ( F `  k )  =  ( F ` 
2 ) )
5150fveq2d 6195 . . . . 5  |-  ( k  =  2  ->  (
I `  ( F `  k ) )  =  ( I `  ( F `  2 )
) )
5249, 51sseq12d 3634 . . . 4  |-  ( k  =  2  ->  ( { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) )  <->  { ( P `  2 ) ,  ( P ` 
3 ) }  C_  ( I `  ( F `  2 )
) ) )
5323, 24, 25, 34, 43, 52raltp 4240 . . 3  |-  ( A. k  e.  { 0 ,  1 ,  2 }  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) )  <->  ( {
( P `  0
) ,  ( P `
 1 ) } 
C_  ( I `  ( F `  0 ) )  /\  { ( P `  1 ) ,  ( P ` 
2 ) }  C_  ( I `  ( F `  1 )
)  /\  { ( P `  2 ) ,  ( P ` 
3 ) }  C_  ( I `  ( F `  2 )
) ) )
5422, 53bitri 264 . 2  |-  ( A. k  e.  ( 0..^ ( # `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
)  <->  ( { ( P `  0 ) ,  ( P ` 
1 ) }  C_  ( I `  ( F `  0 )
)  /\  { ( P `  1 ) ,  ( P ` 
2 ) }  C_  ( I `  ( F `  1 )
)  /\  { ( P `  2 ) ,  ( P ` 
3 ) }  C_  ( I `  ( F `  2 )
) ) )
5520, 54sylibr 224 1  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   {cpr 4179   {ctp 4181   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   2c2 11070   3c3 11071  ..^cfzo 12465   #chash 13117   <"cs3 13587   <"cs4 13588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-s4 13595
This theorem is referenced by:  3wlkd  27030
  Copyright terms: Public domain W3C validator