MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmapd Structured version   Visualization version   GIF version

Theorem acsmapd 17178
Description: In an algebraic closure system, if 𝑇 is contained in the closure of 𝑆, there is a map 𝑓 from 𝑇 into the set of finite subsets of 𝑆 such that the closure of ran 𝑓 contains 𝑇. This is proven by applying acsficl2d 17176 to each element of 𝑇. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsmapd.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsmapd.2 𝑁 = (mrCls‘𝐴)
acsmapd.3 (𝜑𝑆𝑋)
acsmapd.4 (𝜑𝑇 ⊆ (𝑁𝑆))
Assertion
Ref Expression
acsmapd (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)))
Distinct variable groups:   𝑇,𝑓   𝜑,𝑓   𝑆,𝑓   𝑓,𝑁
Allowed substitution hints:   𝐴(𝑓)   𝑋(𝑓)

Proof of Theorem acsmapd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsmapd.4 . . . 4 (𝜑𝑇 ⊆ (𝑁𝑆))
2 fvex 6201 . . . . 5 (𝑁𝑆) ∈ V
32ssex 4802 . . . 4 (𝑇 ⊆ (𝑁𝑆) → 𝑇 ∈ V)
41, 3syl 17 . . 3 (𝜑𝑇 ∈ V)
51sseld 3602 . . . . 5 (𝜑 → (𝑥𝑇𝑥 ∈ (𝑁𝑆)))
6 acsmapd.1 . . . . . 6 (𝜑𝐴 ∈ (ACS‘𝑋))
7 acsmapd.2 . . . . . 6 𝑁 = (mrCls‘𝐴)
8 acsmapd.3 . . . . . 6 (𝜑𝑆𝑋)
96, 7, 8acsficl2d 17176 . . . . 5 (𝜑 → (𝑥 ∈ (𝑁𝑆) ↔ ∃𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦)))
105, 9sylibd 229 . . . 4 (𝜑 → (𝑥𝑇 → ∃𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦)))
1110ralrimiv 2965 . . 3 (𝜑 → ∀𝑥𝑇𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦))
12 fveq2 6191 . . . . 5 (𝑦 = (𝑓𝑥) → (𝑁𝑦) = (𝑁‘(𝑓𝑥)))
1312eleq2d 2687 . . . 4 (𝑦 = (𝑓𝑥) → (𝑥 ∈ (𝑁𝑦) ↔ 𝑥 ∈ (𝑁‘(𝑓𝑥))))
1413ac6sg 9310 . . 3 (𝑇 ∈ V → (∀𝑥𝑇𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))))
154, 11, 14sylc 65 . 2 (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))))
16 simprl 794 . . . . 5 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin))
17 nfv 1843 . . . . . . . 8 𝑥𝜑
18 nfv 1843 . . . . . . . . 9 𝑥 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin)
19 nfra1 2941 . . . . . . . . 9 𝑥𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))
2018, 19nfan 1828 . . . . . . . 8 𝑥(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))
2117, 20nfan 1828 . . . . . . 7 𝑥(𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))))
226ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝐴 ∈ (ACS‘𝑋))
2322acsmred 16317 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝐴 ∈ (Moore‘𝑋))
24 simplrl 800 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin))
25 ffn 6045 . . . . . . . . . . . . . 14 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → 𝑓 Fn 𝑇)
2624, 25syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑓 Fn 𝑇)
27 fnfvelrn 6356 . . . . . . . . . . . . 13 ((𝑓 Fn 𝑇𝑥𝑇) → (𝑓𝑥) ∈ ran 𝑓)
2826, 27sylancom 701 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → (𝑓𝑥) ∈ ran 𝑓)
2928snssd 4340 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → {(𝑓𝑥)} ⊆ ran 𝑓)
3029unissd 4462 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → {(𝑓𝑥)} ⊆ ran 𝑓)
31 frn 6053 . . . . . . . . . . . . . 14 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝑆 ∩ Fin))
3231unissd 4462 . . . . . . . . . . . . 13 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 (𝒫 𝑆 ∩ Fin))
33 unifpw 8269 . . . . . . . . . . . . 13 (𝒫 𝑆 ∩ Fin) = 𝑆
3432, 33syl6sseq 3651 . . . . . . . . . . . 12 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓𝑆)
3524, 34syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → ran 𝑓𝑆)
368ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑆𝑋)
3735, 36sstrd 3613 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → ran 𝑓𝑋)
3823, 7, 30, 37mrcssd 16284 . . . . . . . . 9 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → (𝑁 {(𝑓𝑥)}) ⊆ (𝑁 ran 𝑓))
39 simprr 796 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))
4039r19.21bi 2932 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑁‘(𝑓𝑥)))
41 fvex 6201 . . . . . . . . . . . 12 (𝑓𝑥) ∈ V
4241unisn 4451 . . . . . . . . . . 11 {(𝑓𝑥)} = (𝑓𝑥)
4342fveq2i 6194 . . . . . . . . . 10 (𝑁 {(𝑓𝑥)}) = (𝑁‘(𝑓𝑥))
4440, 43syl6eleqr 2712 . . . . . . . . 9 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑁 {(𝑓𝑥)}))
4538, 44sseldd 3604 . . . . . . . 8 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑁 ran 𝑓))
4645ex 450 . . . . . . 7 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → (𝑥𝑇𝑥 ∈ (𝑁 ran 𝑓)))
4721, 46alrimi 2082 . . . . . 6 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → ∀𝑥(𝑥𝑇𝑥 ∈ (𝑁 ran 𝑓)))
48 dfss2 3591 . . . . . 6 (𝑇 ⊆ (𝑁 ran 𝑓) ↔ ∀𝑥(𝑥𝑇𝑥 ∈ (𝑁 ran 𝑓)))
4947, 48sylibr 224 . . . . 5 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → 𝑇 ⊆ (𝑁 ran 𝑓))
5016, 49jca 554 . . . 4 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)))
5150ex 450 . . 3 (𝜑 → ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))))
5251eximdv 1846 . 2 (𝜑 → (∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))))
5315, 52mpd 15 1 (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158  {csn 4177   cuni 4436  ran crn 5115   Fn wfn 5883  wf 5884  cfv 5888  Fincfn 7955  mrClscmrc 16243  ACScacs 16245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-r1 8627  df-rank 8628  df-card 8765  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-tset 15960  df-ple 15961  df-ocomp 15963  df-mre 16246  df-mrc 16247  df-acs 16249  df-preset 16928  df-drs 16929  df-poset 16946  df-ipo 17152
This theorem is referenced by:  acsmap2d  17179
  Copyright terms: Public domain W3C validator