| Step | Hyp | Ref
| Expression |
| 1 | | acsmapd.4 |
. . . 4
⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑆)) |
| 2 | | fvex 6201 |
. . . . 5
⊢ (𝑁‘𝑆) ∈ V |
| 3 | 2 | ssex 4802 |
. . . 4
⊢ (𝑇 ⊆ (𝑁‘𝑆) → 𝑇 ∈ V) |
| 4 | 1, 3 | syl 17 |
. . 3
⊢ (𝜑 → 𝑇 ∈ V) |
| 5 | 1 | sseld 3602 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑇 → 𝑥 ∈ (𝑁‘𝑆))) |
| 6 | | acsmapd.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
| 7 | | acsmapd.2 |
. . . . . 6
⊢ 𝑁 = (mrCls‘𝐴) |
| 8 | | acsmapd.3 |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| 9 | 6, 7, 8 | acsficl2d 17176 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝑁‘𝑆) ↔ ∃𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁‘𝑦))) |
| 10 | 5, 9 | sylibd 229 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑇 → ∃𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁‘𝑦))) |
| 11 | 10 | ralrimiv 2965 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑇 ∃𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁‘𝑦)) |
| 12 | | fveq2 6191 |
. . . . 5
⊢ (𝑦 = (𝑓‘𝑥) → (𝑁‘𝑦) = (𝑁‘(𝑓‘𝑥))) |
| 13 | 12 | eleq2d 2687 |
. . . 4
⊢ (𝑦 = (𝑓‘𝑥) → (𝑥 ∈ (𝑁‘𝑦) ↔ 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) |
| 14 | 13 | ac6sg 9310 |
. . 3
⊢ (𝑇 ∈ V → (∀𝑥 ∈ 𝑇 ∃𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁‘𝑦) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥))))) |
| 15 | 4, 11, 14 | sylc 65 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) |
| 16 | | simprl 794 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin)) |
| 17 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑥𝜑 |
| 18 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) |
| 19 | | nfra1 2941 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)) |
| 20 | 18, 19 | nfan 1828 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥))) |
| 21 | 17, 20 | nfan 1828 |
. . . . . . 7
⊢
Ⅎ𝑥(𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) |
| 22 | 6 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) ∧ 𝑥 ∈ 𝑇) → 𝐴 ∈ (ACS‘𝑋)) |
| 23 | 22 | acsmred 16317 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) ∧ 𝑥 ∈ 𝑇) → 𝐴 ∈ (Moore‘𝑋)) |
| 24 | | simplrl 800 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) ∧ 𝑥 ∈ 𝑇) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin)) |
| 25 | | ffn 6045 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → 𝑓 Fn 𝑇) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) ∧ 𝑥 ∈ 𝑇) → 𝑓 Fn 𝑇) |
| 27 | | fnfvelrn 6356 |
. . . . . . . . . . . . 13
⊢ ((𝑓 Fn 𝑇 ∧ 𝑥 ∈ 𝑇) → (𝑓‘𝑥) ∈ ran 𝑓) |
| 28 | 26, 27 | sylancom 701 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) ∧ 𝑥 ∈ 𝑇) → (𝑓‘𝑥) ∈ ran 𝑓) |
| 29 | 28 | snssd 4340 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) ∧ 𝑥 ∈ 𝑇) → {(𝑓‘𝑥)} ⊆ ran 𝑓) |
| 30 | 29 | unissd 4462 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) ∧ 𝑥 ∈ 𝑇) → ∪
{(𝑓‘𝑥)} ⊆ ∪ ran 𝑓) |
| 31 | | frn 6053 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝑆 ∩ Fin)) |
| 32 | 31 | unissd 4462 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ∪ ran 𝑓 ⊆ ∪
(𝒫 𝑆 ∩
Fin)) |
| 33 | | unifpw 8269 |
. . . . . . . . . . . . 13
⊢ ∪ (𝒫 𝑆 ∩ Fin) = 𝑆 |
| 34 | 32, 33 | syl6sseq 3651 |
. . . . . . . . . . . 12
⊢ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ∪ ran 𝑓 ⊆ 𝑆) |
| 35 | 24, 34 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) ∧ 𝑥 ∈ 𝑇) → ∪ ran
𝑓 ⊆ 𝑆) |
| 36 | 8 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) ∧ 𝑥 ∈ 𝑇) → 𝑆 ⊆ 𝑋) |
| 37 | 35, 36 | sstrd 3613 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) ∧ 𝑥 ∈ 𝑇) → ∪ ran
𝑓 ⊆ 𝑋) |
| 38 | 23, 7, 30, 37 | mrcssd 16284 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) ∧ 𝑥 ∈ 𝑇) → (𝑁‘∪ {(𝑓‘𝑥)}) ⊆ (𝑁‘∪ ran
𝑓)) |
| 39 | | simprr 796 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) → ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥))) |
| 40 | 39 | r19.21bi 2932 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (𝑁‘(𝑓‘𝑥))) |
| 41 | | fvex 6201 |
. . . . . . . . . . . 12
⊢ (𝑓‘𝑥) ∈ V |
| 42 | 41 | unisn 4451 |
. . . . . . . . . . 11
⊢ ∪ {(𝑓‘𝑥)} = (𝑓‘𝑥) |
| 43 | 42 | fveq2i 6194 |
. . . . . . . . . 10
⊢ (𝑁‘∪ {(𝑓‘𝑥)}) = (𝑁‘(𝑓‘𝑥)) |
| 44 | 40, 43 | syl6eleqr 2712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (𝑁‘∪ {(𝑓‘𝑥)})) |
| 45 | 38, 44 | sseldd 3604 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (𝑁‘∪ ran
𝑓)) |
| 46 | 45 | ex 450 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) → (𝑥 ∈ 𝑇 → 𝑥 ∈ (𝑁‘∪ ran
𝑓))) |
| 47 | 21, 46 | alrimi 2082 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) → ∀𝑥(𝑥 ∈ 𝑇 → 𝑥 ∈ (𝑁‘∪ ran
𝑓))) |
| 48 | | dfss2 3591 |
. . . . . 6
⊢ (𝑇 ⊆ (𝑁‘∪ ran
𝑓) ↔ ∀𝑥(𝑥 ∈ 𝑇 → 𝑥 ∈ (𝑁‘∪ ran
𝑓))) |
| 49 | 47, 48 | sylibr 224 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) → 𝑇 ⊆ (𝑁‘∪ ran
𝑓)) |
| 50 | 16, 49 | jca 554 |
. . . 4
⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥)))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran
𝑓))) |
| 51 | 50 | ex 450 |
. . 3
⊢ (𝜑 → ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran
𝑓)))) |
| 52 | 51 | eximdv 1846 |
. 2
⊢ (𝜑 → (∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥 ∈ 𝑇 𝑥 ∈ (𝑁‘(𝑓‘𝑥))) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran
𝑓)))) |
| 53 | 15, 52 | mpd 15 |
1
⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran
𝑓))) |