![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfelz | Structured version Visualization version GIF version |
Description: (𝐹‘𝐶) has values in ℤ. (Contributed by Thierry Arnoux, 23-Nov-2016.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐))))) |
ballotlemfval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑂) |
ballotlemfval.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
Ref | Expression |
---|---|
ballotlemfelz | ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} | |
4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂))) | |
5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐))))) | |
6 | ballotlemfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑂) | |
7 | ballotlemfval.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ballotlemfval 30551 | . 2 ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) = ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶)))) |
9 | fzfi 12771 | . . . . . 6 ⊢ (1...𝐽) ∈ Fin | |
10 | inss1 3833 | . . . . . 6 ⊢ ((1...𝐽) ∩ 𝐶) ⊆ (1...𝐽) | |
11 | ssfi 8180 | . . . . . 6 ⊢ (((1...𝐽) ∈ Fin ∧ ((1...𝐽) ∩ 𝐶) ⊆ (1...𝐽)) → ((1...𝐽) ∩ 𝐶) ∈ Fin) | |
12 | 9, 10, 11 | mp2an 708 | . . . . 5 ⊢ ((1...𝐽) ∩ 𝐶) ∈ Fin |
13 | hashcl 13147 | . . . . 5 ⊢ (((1...𝐽) ∩ 𝐶) ∈ Fin → (#‘((1...𝐽) ∩ 𝐶)) ∈ ℕ0) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (#‘((1...𝐽) ∩ 𝐶)) ∈ ℕ0 |
15 | 14 | nn0zi 11402 | . . 3 ⊢ (#‘((1...𝐽) ∩ 𝐶)) ∈ ℤ |
16 | difss 3737 | . . . . . 6 ⊢ ((1...𝐽) ∖ 𝐶) ⊆ (1...𝐽) | |
17 | ssfi 8180 | . . . . . 6 ⊢ (((1...𝐽) ∈ Fin ∧ ((1...𝐽) ∖ 𝐶) ⊆ (1...𝐽)) → ((1...𝐽) ∖ 𝐶) ∈ Fin) | |
18 | 9, 16, 17 | mp2an 708 | . . . . 5 ⊢ ((1...𝐽) ∖ 𝐶) ∈ Fin |
19 | hashcl 13147 | . . . . 5 ⊢ (((1...𝐽) ∖ 𝐶) ∈ Fin → (#‘((1...𝐽) ∖ 𝐶)) ∈ ℕ0) | |
20 | 18, 19 | ax-mp 5 | . . . 4 ⊢ (#‘((1...𝐽) ∖ 𝐶)) ∈ ℕ0 |
21 | 20 | nn0zi 11402 | . . 3 ⊢ (#‘((1...𝐽) ∖ 𝐶)) ∈ ℤ |
22 | zsubcl 11419 | . . 3 ⊢ (((#‘((1...𝐽) ∩ 𝐶)) ∈ ℤ ∧ (#‘((1...𝐽) ∖ 𝐶)) ∈ ℤ) → ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))) ∈ ℤ) | |
23 | 15, 21, 22 | mp2an 708 | . 2 ⊢ ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))) ∈ ℤ |
24 | 8, 23 | syl6eqel 2709 | 1 ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 {crab 2916 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 𝒫 cpw 4158 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 1c1 9937 + caddc 9939 − cmin 10266 / cdiv 10684 ℕcn 11020 ℕ0cn0 11292 ℤcz 11377 ...cfz 12326 #chash 13117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-hash 13118 |
This theorem is referenced by: ballotlemfc0 30554 ballotlemfcc 30555 ballotlemodife 30559 ballotlemic 30568 ballotlem1c 30569 ballotlemfrceq 30590 ballotlemfrcn0 30591 |
Copyright terms: Public domain | W3C validator |