| Step | Hyp | Ref
| Expression |
| 1 | | nnuz 11723 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
| 2 | | 1zzd 11408 |
. . . 4
⊢ (⊤
→ 1 ∈ ℤ) |
| 3 | | ax-1cn 9994 |
. . . . 5
⊢ 1 ∈
ℂ |
| 4 | 1 | eqimss2i 3660 |
. . . . . 6
⊢
(ℤ≥‘1) ⊆ ℕ |
| 5 | | nnex 11026 |
. . . . . 6
⊢ ℕ
∈ V |
| 6 | 4, 5 | climconst2 14279 |
. . . . 5
⊢ ((1
∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {1}) ⇝
1) |
| 7 | 3, 2, 6 | sylancr 695 |
. . . 4
⊢ (⊤
→ (ℕ × {1}) ⇝ 1) |
| 8 | | ovexd 6680 |
. . . 4
⊢ (⊤
→ ((ℕ × {1}) ∘𝑓 + ((ℕ ×
{𝐴})
∘𝑓 · 𝐺)) ∈ V) |
| 9 | | basellem7.2 |
. . . . . . 7
⊢ 𝐴 ∈ ℂ |
| 10 | 4, 5 | climconst2 14279 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℤ) → (ℕ × {𝐴}) ⇝ 𝐴) |
| 11 | 9, 2, 10 | sylancr 695 |
. . . . . 6
⊢ (⊤
→ (ℕ × {𝐴}) ⇝ 𝐴) |
| 12 | | ovexd 6680 |
. . . . . 6
⊢ (⊤
→ ((ℕ × {𝐴}) ∘𝑓 ·
𝐺) ∈
V) |
| 13 | | basel.g |
. . . . . . . 8
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 ·
𝑛) + 1))) |
| 14 | 13 | basellem6 24812 |
. . . . . . 7
⊢ 𝐺 ⇝ 0 |
| 15 | 14 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 𝐺 ⇝
0) |
| 16 | 9 | elexi 3213 |
. . . . . . . . 9
⊢ 𝐴 ∈ V |
| 17 | 16 | fconst 6091 |
. . . . . . . 8
⊢ (ℕ
× {𝐴}):ℕ⟶{𝐴} |
| 18 | 9 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ 𝐴 ∈
ℂ) |
| 19 | 18 | snssd 4340 |
. . . . . . . 8
⊢ (⊤
→ {𝐴} ⊆
ℂ) |
| 20 | | fss 6056 |
. . . . . . . 8
⊢
(((ℕ × {𝐴}):ℕ⟶{𝐴} ∧ {𝐴} ⊆ ℂ) → (ℕ ×
{𝐴}):ℕ⟶ℂ) |
| 21 | 17, 19, 20 | sylancr 695 |
. . . . . . 7
⊢ (⊤
→ (ℕ × {𝐴}):ℕ⟶ℂ) |
| 22 | 21 | ffvelrnda 6359 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((ℕ × {𝐴})‘𝑘) ∈ ℂ) |
| 23 | | 2nn 11185 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ |
| 24 | 23 | a1i 11 |
. . . . . . . . . . . 12
⊢ (⊤
→ 2 ∈ ℕ) |
| 25 | | nnmulcl 11043 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ) → (2 · 𝑛) ∈ ℕ) |
| 26 | 24, 25 | sylan 488 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑛
∈ ℕ) → (2 · 𝑛) ∈ ℕ) |
| 27 | 26 | peano2nnd 11037 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑛
∈ ℕ) → ((2 · 𝑛) + 1) ∈ ℕ) |
| 28 | 27 | nnrecred 11066 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑛
∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ) |
| 29 | 28 | recnd 10068 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑛
∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ ℂ) |
| 30 | 29, 13 | fmptd 6385 |
. . . . . . 7
⊢ (⊤
→ 𝐺:ℕ⟶ℂ) |
| 31 | 30 | ffvelrnda 6359 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ∈ ℂ) |
| 32 | | ffn 6045 |
. . . . . . . 8
⊢ ((ℕ
× {𝐴}):ℕ⟶ℂ → (ℕ
× {𝐴}) Fn
ℕ) |
| 33 | 21, 32 | syl 17 |
. . . . . . 7
⊢ (⊤
→ (ℕ × {𝐴}) Fn ℕ) |
| 34 | | ffn 6045 |
. . . . . . . 8
⊢ (𝐺:ℕ⟶ℂ →
𝐺 Fn
ℕ) |
| 35 | 30, 34 | syl 17 |
. . . . . . 7
⊢ (⊤
→ 𝐺 Fn
ℕ) |
| 36 | 5 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ ℕ ∈ V) |
| 37 | | inidm 3822 |
. . . . . . 7
⊢ (ℕ
∩ ℕ) = ℕ |
| 38 | | eqidd 2623 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((ℕ × {𝐴})‘𝑘) = ((ℕ × {𝐴})‘𝑘)) |
| 39 | | eqidd 2623 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) = (𝐺‘𝑘)) |
| 40 | 33, 35, 36, 36, 37, 38, 39 | ofval 6906 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {𝐴}) ∘𝑓 ·
𝐺)‘𝑘) = (((ℕ × {𝐴})‘𝑘) · (𝐺‘𝑘))) |
| 41 | 1, 2, 11, 12, 15, 22, 31, 40 | climmul 14363 |
. . . . 5
⊢ (⊤
→ ((ℕ × {𝐴}) ∘𝑓 ·
𝐺) ⇝ (𝐴 · 0)) |
| 42 | 9 | mul01i 10226 |
. . . . 5
⊢ (𝐴 · 0) =
0 |
| 43 | 41, 42 | syl6breq 4694 |
. . . 4
⊢ (⊤
→ ((ℕ × {𝐴}) ∘𝑓 ·
𝐺) ⇝
0) |
| 44 | | 1ex 10035 |
. . . . . . 7
⊢ 1 ∈
V |
| 45 | 44 | fconst 6091 |
. . . . . 6
⊢ (ℕ
× {1}):ℕ⟶{1} |
| 46 | 3 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 1 ∈ ℂ) |
| 47 | 46 | snssd 4340 |
. . . . . 6
⊢ (⊤
→ {1} ⊆ ℂ) |
| 48 | | fss 6056 |
. . . . . 6
⊢
(((ℕ × {1}):ℕ⟶{1} ∧ {1} ⊆ ℂ)
→ (ℕ × {1}):ℕ⟶ℂ) |
| 49 | 45, 47, 48 | sylancr 695 |
. . . . 5
⊢ (⊤
→ (ℕ × {1}):ℕ⟶ℂ) |
| 50 | 49 | ffvelrnda 6359 |
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((ℕ × {1})‘𝑘) ∈ ℂ) |
| 51 | | mulcl 10020 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
| 52 | 51 | adantl 482 |
. . . . . 6
⊢
((⊤ ∧ (𝑥
∈ ℂ ∧ 𝑦
∈ ℂ)) → (𝑥
· 𝑦) ∈
ℂ) |
| 53 | 52, 21, 30, 36, 36, 37 | off 6912 |
. . . . 5
⊢ (⊤
→ ((ℕ × {𝐴}) ∘𝑓 ·
𝐺):ℕ⟶ℂ) |
| 54 | 53 | ffvelrnda 6359 |
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {𝐴}) ∘𝑓 ·
𝐺)‘𝑘) ∈ ℂ) |
| 55 | 45 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (ℕ × {1}):ℕ⟶{1}) |
| 56 | | ffn 6045 |
. . . . . 6
⊢ ((ℕ
× {1}):ℕ⟶{1} → (ℕ × {1}) Fn
ℕ) |
| 57 | 55, 56 | syl 17 |
. . . . 5
⊢ (⊤
→ (ℕ × {1}) Fn ℕ) |
| 58 | | ffn 6045 |
. . . . . 6
⊢
(((ℕ × {𝐴}) ∘𝑓 ·
𝐺):ℕ⟶ℂ
→ ((ℕ × {𝐴}) ∘𝑓 ·
𝐺) Fn
ℕ) |
| 59 | 53, 58 | syl 17 |
. . . . 5
⊢ (⊤
→ ((ℕ × {𝐴}) ∘𝑓 ·
𝐺) Fn
ℕ) |
| 60 | | eqidd 2623 |
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((ℕ × {1})‘𝑘) = ((ℕ × {1})‘𝑘)) |
| 61 | | eqidd 2623 |
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {𝐴}) ∘𝑓 ·
𝐺)‘𝑘) = (((ℕ × {𝐴}) ∘𝑓 ·
𝐺)‘𝑘)) |
| 62 | 57, 59, 36, 36, 37, 60, 61 | ofval 6906 |
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {1}) ∘𝑓 +
((ℕ × {𝐴})
∘𝑓 · 𝐺))‘𝑘) = (((ℕ × {1})‘𝑘) + (((ℕ × {𝐴}) ∘𝑓
· 𝐺)‘𝑘))) |
| 63 | 1, 2, 7, 8, 43, 50, 54, 62 | climadd 14362 |
. . 3
⊢ (⊤
→ ((ℕ × {1}) ∘𝑓 + ((ℕ ×
{𝐴})
∘𝑓 · 𝐺)) ⇝ (1 + 0)) |
| 64 | 63 | trud 1493 |
. 2
⊢ ((ℕ
× {1}) ∘𝑓 + ((ℕ × {𝐴}) ∘𝑓 ·
𝐺)) ⇝ (1 +
0) |
| 65 | | 1p0e1 11133 |
. 2
⊢ (1 + 0) =
1 |
| 66 | 64, 65 | breqtri 4678 |
1
⊢ ((ℕ
× {1}) ∘𝑓 + ((ℕ × {𝐴}) ∘𝑓 ·
𝐺)) ⇝
1 |