MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem9 Structured version   Visualization version   GIF version

Theorem basellem9 24815
Description: Lemma for basel 24816. Since by basellem8 24814 𝐹 is bounded by two expressions that tend to π↑2 / 6, 𝐹 must also go to π↑2 / 6 by the squeeze theorem climsqz 14371. But the series 𝐹 is exactly the partial sums of 𝑘↑-2, so it follows that this is also the value of the infinite sum Σ𝑘 ∈ ℕ(𝑘↑-2). (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
basel.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
basel.f 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))
basel.h 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺))
basel.j 𝐽 = (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))
basel.k 𝐾 = (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺))
Assertion
Ref Expression
basellem9 Σ𝑘 ∈ ℕ (𝑘↑-2) = ((π↑2) / 6)
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝐺   𝑘,𝐻   𝑘,𝐽,𝑛   𝑘,𝐾
Allowed substitution hints:   𝐺(𝑛)   𝐻(𝑛)   𝐾(𝑛)

Proof of Theorem basellem9
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . 3 ℕ = (ℤ‘1)
2 1zzd 11408 . . 3 (⊤ → 1 ∈ ℤ)
3 oveq1 6657 . . . . 5 (𝑛 = 𝑘 → (𝑛↑-2) = (𝑘↑-2))
4 eqid 2622 . . . . 5 (𝑛 ∈ ℕ ↦ (𝑛↑-2)) = (𝑛 ∈ ℕ ↦ (𝑛↑-2))
5 ovex 6678 . . . . 5 (𝑘↑-2) ∈ V
63, 4, 5fvmpt 6282 . . . 4 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛↑-2))‘𝑘) = (𝑘↑-2))
76adantl 482 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛↑-2))‘𝑘) = (𝑘↑-2))
8 nnre 11027 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
9 nnne0 11053 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
10 2z 11409 . . . . . . . . . . 11 2 ∈ ℤ
11 znegcl 11412 . . . . . . . . . . 11 (2 ∈ ℤ → -2 ∈ ℤ)
1210, 11ax-mp 5 . . . . . . . . . 10 -2 ∈ ℤ
1312a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → -2 ∈ ℤ)
148, 9, 13reexpclzd 13034 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛↑-2) ∈ ℝ)
1514adantl 482 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝑛↑-2) ∈ ℝ)
1615, 4fmptd 6385 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (𝑛↑-2)):ℕ⟶ℝ)
1716ffvelrnda 6359 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛↑-2))‘𝑘) ∈ ℝ)
187, 17eqeltrrd 2702 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘↑-2) ∈ ℝ)
1918recnd 10068 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘↑-2) ∈ ℂ)
201, 2, 17serfre 12830 . . . . . . . . . . 11 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2))):ℕ⟶ℝ)
21 basel.f . . . . . . . . . . . 12 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))
2221feq1i 6036 . . . . . . . . . . 11 (𝐹:ℕ⟶ℝ ↔ seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2))):ℕ⟶ℝ)
2320, 22sylibr 224 . . . . . . . . . 10 (⊤ → 𝐹:ℕ⟶ℝ)
2423ffvelrnda 6359 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
2524recnd 10068 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℂ)
26 remulcl 10021 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
2726adantl 482 . . . . . . . . . . . 12 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
28 ovex 6678 . . . . . . . . . . . . . . . 16 ((π↑2) / 6) ∈ V
2928fconst 6091 . . . . . . . . . . . . . . 15 (ℕ × {((π↑2) / 6)}):ℕ⟶{((π↑2) / 6)}
30 pire 24210 . . . . . . . . . . . . . . . . . . 19 π ∈ ℝ
3130resqcli 12949 . . . . . . . . . . . . . . . . . 18 (π↑2) ∈ ℝ
32 6re 11101 . . . . . . . . . . . . . . . . . 18 6 ∈ ℝ
33 6nn 11189 . . . . . . . . . . . . . . . . . . 19 6 ∈ ℕ
3433nnne0i 11055 . . . . . . . . . . . . . . . . . 18 6 ≠ 0
3531, 32, 34redivcli 10792 . . . . . . . . . . . . . . . . 17 ((π↑2) / 6) ∈ ℝ
3635a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → ((π↑2) / 6) ∈ ℝ)
3736snssd 4340 . . . . . . . . . . . . . . 15 (⊤ → {((π↑2) / 6)} ⊆ ℝ)
38 fss 6056 . . . . . . . . . . . . . . 15 (((ℕ × {((π↑2) / 6)}):ℕ⟶{((π↑2) / 6)} ∧ {((π↑2) / 6)} ⊆ ℝ) → (ℕ × {((π↑2) / 6)}):ℕ⟶ℝ)
3929, 37, 38sylancr 695 . . . . . . . . . . . . . 14 (⊤ → (ℕ × {((π↑2) / 6)}):ℕ⟶ℝ)
40 resubcl 10345 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
4140adantl 482 . . . . . . . . . . . . . . 15 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
42 1ex 10035 . . . . . . . . . . . . . . . . 17 1 ∈ V
4342fconst 6091 . . . . . . . . . . . . . . . 16 (ℕ × {1}):ℕ⟶{1}
44 1red 10055 . . . . . . . . . . . . . . . . 17 (⊤ → 1 ∈ ℝ)
4544snssd 4340 . . . . . . . . . . . . . . . 16 (⊤ → {1} ⊆ ℝ)
46 fss 6056 . . . . . . . . . . . . . . . 16 (((ℕ × {1}):ℕ⟶{1} ∧ {1} ⊆ ℝ) → (ℕ × {1}):ℕ⟶ℝ)
4743, 45, 46sylancr 695 . . . . . . . . . . . . . . 15 (⊤ → (ℕ × {1}):ℕ⟶ℝ)
48 2nn 11185 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ
4948a1i 11 . . . . . . . . . . . . . . . . . . 19 (⊤ → 2 ∈ ℕ)
50 nnmulcl 11043 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
5149, 50sylan 488 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
5251peano2nnd 11037 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑛 ∈ ℕ) → ((2 · 𝑛) + 1) ∈ ℕ)
5352nnrecred 11066 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
54 basel.g . . . . . . . . . . . . . . . 16 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
5553, 54fmptd 6385 . . . . . . . . . . . . . . 15 (⊤ → 𝐺:ℕ⟶ℝ)
56 nnex 11026 . . . . . . . . . . . . . . . 16 ℕ ∈ V
5756a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ℕ ∈ V)
58 inidm 3822 . . . . . . . . . . . . . . 15 (ℕ ∩ ℕ) = ℕ
5941, 47, 55, 57, 57, 58off 6912 . . . . . . . . . . . . . 14 (⊤ → ((ℕ × {1}) ∘𝑓𝐺):ℕ⟶ℝ)
6027, 39, 59, 57, 57, 58off 6912 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺)):ℕ⟶ℝ)
61 basel.h . . . . . . . . . . . . . 14 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺))
6261feq1i 6036 . . . . . . . . . . . . 13 (𝐻:ℕ⟶ℝ ↔ ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺)):ℕ⟶ℝ)
6360, 62sylibr 224 . . . . . . . . . . . 12 (⊤ → 𝐻:ℕ⟶ℝ)
64 readdcl 10019 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
6564adantl 482 . . . . . . . . . . . . 13 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
66 negex 10279 . . . . . . . . . . . . . . . 16 -2 ∈ V
6766fconst 6091 . . . . . . . . . . . . . . 15 (ℕ × {-2}):ℕ⟶{-2}
6812zrei 11383 . . . . . . . . . . . . . . . . 17 -2 ∈ ℝ
6968a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → -2 ∈ ℝ)
7069snssd 4340 . . . . . . . . . . . . . . 15 (⊤ → {-2} ⊆ ℝ)
71 fss 6056 . . . . . . . . . . . . . . 15 (((ℕ × {-2}):ℕ⟶{-2} ∧ {-2} ⊆ ℝ) → (ℕ × {-2}):ℕ⟶ℝ)
7267, 70, 71sylancr 695 . . . . . . . . . . . . . 14 (⊤ → (ℕ × {-2}):ℕ⟶ℝ)
7327, 72, 55, 57, 57, 58off 6912 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {-2}) ∘𝑓 · 𝐺):ℕ⟶ℝ)
7465, 47, 73, 57, 57, 58off 6912 . . . . . . . . . . . 12 (⊤ → ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)):ℕ⟶ℝ)
7527, 63, 74, 57, 57, 58off 6912 . . . . . . . . . . 11 (⊤ → (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))):ℕ⟶ℝ)
76 basel.j . . . . . . . . . . . 12 𝐽 = (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))
7776feq1i 6036 . . . . . . . . . . 11 (𝐽:ℕ⟶ℝ ↔ (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))):ℕ⟶ℝ)
7875, 77sylibr 224 . . . . . . . . . 10 (⊤ → 𝐽:ℕ⟶ℝ)
7978ffvelrnda 6359 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐽𝑛) ∈ ℝ)
8079recnd 10068 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐽𝑛) ∈ ℂ)
8125, 80npcand 10396 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℕ) → (((𝐹𝑛) − (𝐽𝑛)) + (𝐽𝑛)) = (𝐹𝑛))
8281mpteq2dva 4744 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (((𝐹𝑛) − (𝐽𝑛)) + (𝐽𝑛))) = (𝑛 ∈ ℕ ↦ (𝐹𝑛)))
83 ovexd 6680 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) − (𝐽𝑛)) ∈ V)
8423feqmptd 6249 . . . . . . . 8 (⊤ → 𝐹 = (𝑛 ∈ ℕ ↦ (𝐹𝑛)))
8578feqmptd 6249 . . . . . . . 8 (⊤ → 𝐽 = (𝑛 ∈ ℕ ↦ (𝐽𝑛)))
8657, 24, 79, 84, 85offval2 6914 . . . . . . 7 (⊤ → (𝐹𝑓𝐽) = (𝑛 ∈ ℕ ↦ ((𝐹𝑛) − (𝐽𝑛))))
8757, 83, 79, 86, 85offval2 6914 . . . . . 6 (⊤ → ((𝐹𝑓𝐽) ∘𝑓 + 𝐽) = (𝑛 ∈ ℕ ↦ (((𝐹𝑛) − (𝐽𝑛)) + (𝐽𝑛))))
8882, 87, 843eqtr4d 2666 . . . . 5 (⊤ → ((𝐹𝑓𝐽) ∘𝑓 + 𝐽) = 𝐹)
8965, 47, 55, 57, 57, 58off 6912 . . . . . . . . . 10 (⊤ → ((ℕ × {1}) ∘𝑓 + 𝐺):ℕ⟶ℝ)
90 recn 10026 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
91 recn 10026 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
92 recn 10026 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
93 subdi 10463 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
9490, 91, 92, 93syl3an 1368 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
9594adantl 482 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
9657, 63, 89, 74, 95caofdi 6933 . . . . . . . . 9 (⊤ → (𝐻𝑓 · (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))) = ((𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺)) ∘𝑓 − (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))))
97 basel.k . . . . . . . . . 10 𝐾 = (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺))
9897, 76oveq12i 6662 . . . . . . . . 9 (𝐾𝑓𝐽) = ((𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺)) ∘𝑓 − (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))))
9996, 98syl6eqr 2674 . . . . . . . 8 (⊤ → (𝐻𝑓 · (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))) = (𝐾𝑓𝐽))
10035recni 10052 . . . . . . . . . . . . . 14 ((π↑2) / 6) ∈ ℂ
1011eqimss2i 3660 . . . . . . . . . . . . . . 15 (ℤ‘1) ⊆ ℕ
102101, 56climconst2 14279 . . . . . . . . . . . . . 14 ((((π↑2) / 6) ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {((π↑2) / 6)}) ⇝ ((π↑2) / 6))
103100, 2, 102sylancr 695 . . . . . . . . . . . . 13 (⊤ → (ℕ × {((π↑2) / 6)}) ⇝ ((π↑2) / 6))
104 ovexd 6680 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺)) ∈ V)
105 ax-resscn 9993 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
106 fss 6056 . . . . . . . . . . . . . . . 16 (((ℕ × {1}):ℕ⟶ℝ ∧ ℝ ⊆ ℂ) → (ℕ × {1}):ℕ⟶ℂ)
10747, 105, 106sylancl 694 . . . . . . . . . . . . . . 15 (⊤ → (ℕ × {1}):ℕ⟶ℂ)
108 fss 6056 . . . . . . . . . . . . . . . 16 ((𝐺:ℕ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:ℕ⟶ℂ)
10955, 105, 108sylancl 694 . . . . . . . . . . . . . . 15 (⊤ → 𝐺:ℕ⟶ℂ)
110 ofnegsub 11018 . . . . . . . . . . . . . . 15 ((ℕ ∈ V ∧ (ℕ × {1}):ℕ⟶ℂ ∧ 𝐺:ℕ⟶ℂ) → ((ℕ × {1}) ∘𝑓 + ((ℕ × {-1}) ∘𝑓 · 𝐺)) = ((ℕ × {1}) ∘𝑓𝐺))
11157, 107, 109, 110syl3anc 1326 . . . . . . . . . . . . . 14 (⊤ → ((ℕ × {1}) ∘𝑓 + ((ℕ × {-1}) ∘𝑓 · 𝐺)) = ((ℕ × {1}) ∘𝑓𝐺))
112 neg1cn 11124 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
11354, 112basellem7 24813 . . . . . . . . . . . . . 14 ((ℕ × {1}) ∘𝑓 + ((ℕ × {-1}) ∘𝑓 · 𝐺)) ⇝ 1
114111, 113syl6eqbrr 4693 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {1}) ∘𝑓𝐺) ⇝ 1)
11539ffvelrnda 6359 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {((π↑2) / 6)})‘𝑘) ∈ ℝ)
116115recnd 10068 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {((π↑2) / 6)})‘𝑘) ∈ ℂ)
11759ffvelrnda 6359 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓𝐺)‘𝑘) ∈ ℝ)
118117recnd 10068 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓𝐺)‘𝑘) ∈ ℂ)
119 ffn 6045 . . . . . . . . . . . . . . 15 ((ℕ × {((π↑2) / 6)}):ℕ⟶ℝ → (ℕ × {((π↑2) / 6)}) Fn ℕ)
12039, 119syl 17 . . . . . . . . . . . . . 14 (⊤ → (ℕ × {((π↑2) / 6)}) Fn ℕ)
121 fnconstg 6093 . . . . . . . . . . . . . . . 16 (1 ∈ ℤ → (ℕ × {1}) Fn ℕ)
1222, 121syl 17 . . . . . . . . . . . . . . 15 (⊤ → (ℕ × {1}) Fn ℕ)
123 ffn 6045 . . . . . . . . . . . . . . . 16 (𝐺:ℕ⟶ℝ → 𝐺 Fn ℕ)
12455, 123syl 17 . . . . . . . . . . . . . . 15 (⊤ → 𝐺 Fn ℕ)
125122, 124, 57, 57, 58offn 6908 . . . . . . . . . . . . . 14 (⊤ → ((ℕ × {1}) ∘𝑓𝐺) Fn ℕ)
126 eqidd 2623 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {((π↑2) / 6)})‘𝑘) = ((ℕ × {((π↑2) / 6)})‘𝑘))
127 eqidd 2623 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓𝐺)‘𝑘) = (((ℕ × {1}) ∘𝑓𝐺)‘𝑘))
128120, 125, 57, 57, 58, 126, 127ofval 6906 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺))‘𝑘) = (((ℕ × {((π↑2) / 6)})‘𝑘) · (((ℕ × {1}) ∘𝑓𝐺)‘𝑘)))
1291, 2, 103, 104, 114, 116, 118, 128climmul 14363 . . . . . . . . . . . 12 (⊤ → ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺)) ⇝ (((π↑2) / 6) · 1))
130100mulid1i 10042 . . . . . . . . . . . 12 (((π↑2) / 6) · 1) = ((π↑2) / 6)
131129, 130syl6breq 4694 . . . . . . . . . . 11 (⊤ → ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺)) ⇝ ((π↑2) / 6))
13261, 131syl5eqbr 4688 . . . . . . . . . 10 (⊤ → 𝐻 ⇝ ((π↑2) / 6))
133 ovexd 6680 . . . . . . . . . 10 (⊤ → (𝐻𝑓 · (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))) ∈ V)
134 3cn 11095 . . . . . . . . . . . . 13 3 ∈ ℂ
135101, 56climconst2 14279 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {3}) ⇝ 3)
136134, 2, 135sylancr 695 . . . . . . . . . . . 12 (⊤ → (ℕ × {3}) ⇝ 3)
137 ovexd 6680 . . . . . . . . . . . 12 (⊤ → ((ℕ × {3}) ∘𝑓 · 𝐺) ∈ V)
13854basellem6 24812 . . . . . . . . . . . . 13 𝐺 ⇝ 0
139138a1i 11 . . . . . . . . . . . 12 (⊤ → 𝐺 ⇝ 0)
140 3ex 11096 . . . . . . . . . . . . . . . 16 3 ∈ V
141140fconst 6091 . . . . . . . . . . . . . . 15 (ℕ × {3}):ℕ⟶{3}
142 3re 11094 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
143142a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → 3 ∈ ℝ)
144143snssd 4340 . . . . . . . . . . . . . . 15 (⊤ → {3} ⊆ ℝ)
145 fss 6056 . . . . . . . . . . . . . . 15 (((ℕ × {3}):ℕ⟶{3} ∧ {3} ⊆ ℝ) → (ℕ × {3}):ℕ⟶ℝ)
146141, 144, 145sylancr 695 . . . . . . . . . . . . . 14 (⊤ → (ℕ × {3}):ℕ⟶ℝ)
147146ffvelrnda 6359 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {3})‘𝑘) ∈ ℝ)
148147recnd 10068 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {3})‘𝑘) ∈ ℂ)
14955ffvelrnda 6359 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
150149recnd 10068 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
151 ffn 6045 . . . . . . . . . . . . . 14 ((ℕ × {3}):ℕ⟶ℝ → (ℕ × {3}) Fn ℕ)
152146, 151syl 17 . . . . . . . . . . . . 13 (⊤ → (ℕ × {3}) Fn ℕ)
153 eqidd 2623 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {3})‘𝑘) = ((ℕ × {3})‘𝑘))
154 eqidd 2623 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐺𝑘))
155152, 124, 57, 57, 58, 153, 154ofval 6906 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {3}) ∘𝑓 · 𝐺)‘𝑘) = (((ℕ × {3})‘𝑘) · (𝐺𝑘)))
1561, 2, 136, 137, 139, 148, 150, 155climmul 14363 . . . . . . . . . . 11 (⊤ → ((ℕ × {3}) ∘𝑓 · 𝐺) ⇝ (3 · 0))
157134mul01i 10226 . . . . . . . . . . 11 (3 · 0) = 0
158156, 157syl6breq 4694 . . . . . . . . . 10 (⊤ → ((ℕ × {3}) ∘𝑓 · 𝐺) ⇝ 0)
15963ffvelrnda 6359 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℝ)
160159recnd 10068 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℂ)
16127, 146, 55, 57, 57, 58off 6912 . . . . . . . . . . . 12 (⊤ → ((ℕ × {3}) ∘𝑓 · 𝐺):ℕ⟶ℝ)
162161ffvelrnda 6359 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {3}) ∘𝑓 · 𝐺)‘𝑘) ∈ ℝ)
163162recnd 10068 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {3}) ∘𝑓 · 𝐺)‘𝑘) ∈ ℂ)
164 ffn 6045 . . . . . . . . . . . 12 (𝐻:ℕ⟶ℝ → 𝐻 Fn ℕ)
16563, 164syl 17 . . . . . . . . . . 11 (⊤ → 𝐻 Fn ℕ)
16641, 89, 74, 57, 57, 58off 6912 . . . . . . . . . . . 12 (⊤ → (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))):ℕ⟶ℝ)
167 ffn 6045 . . . . . . . . . . . 12 ((((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))):ℕ⟶ℝ → (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))) Fn ℕ)
168166, 167syl 17 . . . . . . . . . . 11 (⊤ → (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))) Fn ℕ)
169 eqidd 2623 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐻𝑘))
170150mulid2d 10058 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 · (𝐺𝑘)) = (𝐺𝑘))
171 2cn 11091 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
172 mulneg1 10466 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ (𝐺𝑘) ∈ ℂ) → (-2 · (𝐺𝑘)) = -(2 · (𝐺𝑘)))
173171, 150, 172sylancr 695 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (-2 · (𝐺𝑘)) = -(2 · (𝐺𝑘)))
174173negeqd 10275 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → -(-2 · (𝐺𝑘)) = --(2 · (𝐺𝑘)))
175 mulcl 10020 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ (𝐺𝑘) ∈ ℂ) → (2 · (𝐺𝑘)) ∈ ℂ)
176171, 150, 175sylancr 695 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · (𝐺𝑘)) ∈ ℂ)
177176negnegd 10383 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → --(2 · (𝐺𝑘)) = (2 · (𝐺𝑘)))
178174, 177eqtr2d 2657 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · (𝐺𝑘)) = -(-2 · (𝐺𝑘)))
179170, 178oveq12d 6668 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 · (𝐺𝑘)) + (2 · (𝐺𝑘))) = ((𝐺𝑘) + -(-2 · (𝐺𝑘))))
180 remulcl 10021 . . . . . . . . . . . . . . . . 17 ((-2 ∈ ℝ ∧ (𝐺𝑘) ∈ ℝ) → (-2 · (𝐺𝑘)) ∈ ℝ)
18168, 149, 180sylancr 695 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → (-2 · (𝐺𝑘)) ∈ ℝ)
182181recnd 10068 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → (-2 · (𝐺𝑘)) ∈ ℂ)
183150, 182negsubd 10398 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) + -(-2 · (𝐺𝑘))) = ((𝐺𝑘) − (-2 · (𝐺𝑘))))
184179, 183eqtrd 2656 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 · (𝐺𝑘)) + (2 · (𝐺𝑘))) = ((𝐺𝑘) − (-2 · (𝐺𝑘))))
185 df-3 11080 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
186 ax-1cn 9994 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
187171, 186addcomi 10227 . . . . . . . . . . . . . . . 16 (2 + 1) = (1 + 2)
188185, 187eqtri 2644 . . . . . . . . . . . . . . 15 3 = (1 + 2)
189188oveq1i 6660 . . . . . . . . . . . . . 14 (3 · (𝐺𝑘)) = ((1 + 2) · (𝐺𝑘))
190 1cnd 10056 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
191171a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
192190, 191, 150adddird 10065 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 + 2) · (𝐺𝑘)) = ((1 · (𝐺𝑘)) + (2 · (𝐺𝑘))))
193189, 192syl5eq 2668 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (3 · (𝐺𝑘)) = ((1 · (𝐺𝑘)) + (2 · (𝐺𝑘))))
194190, 150, 182pnpcand 10429 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 + (𝐺𝑘)) − (1 + (-2 · (𝐺𝑘)))) = ((𝐺𝑘) − (-2 · (𝐺𝑘))))
195184, 193, 1943eqtr4rd 2667 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 + (𝐺𝑘)) − (1 + (-2 · (𝐺𝑘)))) = (3 · (𝐺𝑘)))
196122, 124, 57, 57, 58offn 6908 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {1}) ∘𝑓 + 𝐺) Fn ℕ)
19712a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → -2 ∈ ℤ)
198 fnconstg 6093 . . . . . . . . . . . . . . . 16 (-2 ∈ ℤ → (ℕ × {-2}) Fn ℕ)
199197, 198syl 17 . . . . . . . . . . . . . . 15 (⊤ → (ℕ × {-2}) Fn ℕ)
200199, 124, 57, 57, 58offn 6908 . . . . . . . . . . . . . 14 (⊤ → ((ℕ × {-2}) ∘𝑓 · 𝐺) Fn ℕ)
201122, 200, 57, 57, 58offn 6908 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)) Fn ℕ)
20257, 44, 124, 154ofc1 6920 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓 + 𝐺)‘𝑘) = (1 + (𝐺𝑘)))
20357, 69, 124, 154ofc1 6920 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {-2}) ∘𝑓 · 𝐺)‘𝑘) = (-2 · (𝐺𝑘)))
20457, 44, 200, 203ofc1 6920 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))‘𝑘) = (1 + (-2 · (𝐺𝑘))))
205196, 201, 57, 57, 58, 202, 204ofval 6906 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))‘𝑘) = ((1 + (𝐺𝑘)) − (1 + (-2 · (𝐺𝑘)))))
20657, 143, 124, 154ofc1 6920 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {3}) ∘𝑓 · 𝐺)‘𝑘) = (3 · (𝐺𝑘)))
207195, 205, 2063eqtr4d 2666 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))‘𝑘) = (((ℕ × {3}) ∘𝑓 · 𝐺)‘𝑘))
208165, 168, 57, 57, 58, 169, 207ofval 6906 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐻𝑓 · (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))))‘𝑘) = ((𝐻𝑘) · (((ℕ × {3}) ∘𝑓 · 𝐺)‘𝑘)))
2091, 2, 132, 133, 158, 160, 163, 208climmul 14363 . . . . . . . . 9 (⊤ → (𝐻𝑓 · (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))) ⇝ (((π↑2) / 6) · 0))
210100mul01i 10226 . . . . . . . . 9 (((π↑2) / 6) · 0) = 0
211209, 210syl6breq 4694 . . . . . . . 8 (⊤ → (𝐻𝑓 · (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))) ⇝ 0)
21299, 211eqbrtrrd 4677 . . . . . . 7 (⊤ → (𝐾𝑓𝐽) ⇝ 0)
213 ovexd 6680 . . . . . . 7 (⊤ → (𝐹𝑓𝐽) ∈ V)
21427, 63, 89, 57, 57, 58off 6912 . . . . . . . . . 10 (⊤ → (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺)):ℕ⟶ℝ)
21597feq1i 6036 . . . . . . . . . 10 (𝐾:ℕ⟶ℝ ↔ (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺)):ℕ⟶ℝ)
216214, 215sylibr 224 . . . . . . . . 9 (⊤ → 𝐾:ℕ⟶ℝ)
21741, 216, 78, 57, 57, 58off 6912 . . . . . . . 8 (⊤ → (𝐾𝑓𝐽):ℕ⟶ℝ)
218217ffvelrnda 6359 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐾𝑓𝐽)‘𝑘) ∈ ℝ)
21941, 23, 78, 57, 57, 58off 6912 . . . . . . . 8 (⊤ → (𝐹𝑓𝐽):ℕ⟶ℝ)
220219ffvelrnda 6359 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓𝐽)‘𝑘) ∈ ℝ)
22123ffvelrnda 6359 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
222216ffvelrnda 6359 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐾𝑘) ∈ ℝ)
22378ffvelrnda 6359 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐽𝑘) ∈ ℝ)
224 eqid 2622 . . . . . . . . . . . 12 ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)
22554, 21, 61, 76, 97, 224basellem8 24814 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝐽𝑘) ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝐾𝑘)))
226225adantl 482 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐽𝑘) ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝐾𝑘)))
227226simprd 479 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ≤ (𝐾𝑘))
228221, 222, 223, 227lesub1dd 10643 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) − (𝐽𝑘)) ≤ ((𝐾𝑘) − (𝐽𝑘)))
229 ffn 6045 . . . . . . . . . 10 (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ)
23023, 229syl 17 . . . . . . . . 9 (⊤ → 𝐹 Fn ℕ)
231 ffn 6045 . . . . . . . . . 10 (𝐽:ℕ⟶ℝ → 𝐽 Fn ℕ)
23278, 231syl 17 . . . . . . . . 9 (⊤ → 𝐽 Fn ℕ)
233 eqidd 2623 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
234 eqidd 2623 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐽𝑘) = (𝐽𝑘))
235230, 232, 57, 57, 58, 233, 234ofval 6906 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓𝐽)‘𝑘) = ((𝐹𝑘) − (𝐽𝑘)))
236 ffn 6045 . . . . . . . . . 10 (𝐾:ℕ⟶ℝ → 𝐾 Fn ℕ)
237216, 236syl 17 . . . . . . . . 9 (⊤ → 𝐾 Fn ℕ)
238 eqidd 2623 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐾𝑘) = (𝐾𝑘))
239237, 232, 57, 57, 58, 238, 234ofval 6906 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐾𝑓𝐽)‘𝑘) = ((𝐾𝑘) − (𝐽𝑘)))
240228, 235, 2393brtr4d 4685 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓𝐽)‘𝑘) ≤ ((𝐾𝑓𝐽)‘𝑘))
241226simpld 475 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐽𝑘) ≤ (𝐹𝑘))
242221, 223subge0d 10617 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑘) − (𝐽𝑘)) ↔ (𝐽𝑘) ≤ (𝐹𝑘)))
243241, 242mpbird 247 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘) − (𝐽𝑘)))
244243, 235breqtrrd 4681 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑓𝐽)‘𝑘))
2451, 2, 212, 213, 218, 220, 240, 244climsqz2 14372 . . . . . 6 (⊤ → (𝐹𝑓𝐽) ⇝ 0)
246 ovexd 6680 . . . . . 6 (⊤ → ((𝐹𝑓𝐽) ∘𝑓 + 𝐽) ∈ V)
247 ovexd 6680 . . . . . . . . 9 (⊤ → (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))) ∈ V)
24868recni 10052 . . . . . . . . . . 11 -2 ∈ ℂ
24954, 248basellem7 24813 . . . . . . . . . 10 ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)) ⇝ 1
250249a1i 11 . . . . . . . . 9 (⊤ → ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)) ⇝ 1)
25174ffvelrnda 6359 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))‘𝑘) ∈ ℝ)
252251recnd 10068 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))‘𝑘) ∈ ℂ)
253 eqidd 2623 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))‘𝑘) = (((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))‘𝑘))
254165, 201, 57, 57, 58, 169, 253ofval 6906 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))‘𝑘) = ((𝐻𝑘) · (((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))‘𝑘)))
2551, 2, 132, 247, 250, 160, 252, 254climmul 14363 . . . . . . . 8 (⊤ → (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))) ⇝ (((π↑2) / 6) · 1))
256255, 130syl6breq 4694 . . . . . . 7 (⊤ → (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))) ⇝ ((π↑2) / 6))
25776, 256syl5eqbr 4688 . . . . . 6 (⊤ → 𝐽 ⇝ ((π↑2) / 6))
258220recnd 10068 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓𝐽)‘𝑘) ∈ ℂ)
259223recnd 10068 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐽𝑘) ∈ ℂ)
260 ffn 6045 . . . . . . . 8 ((𝐹𝑓𝐽):ℕ⟶ℝ → (𝐹𝑓𝐽) Fn ℕ)
261219, 260syl 17 . . . . . . 7 (⊤ → (𝐹𝑓𝐽) Fn ℕ)
262 eqidd 2623 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓𝐽)‘𝑘) = ((𝐹𝑓𝐽)‘𝑘))
263261, 232, 57, 57, 58, 262, 234ofval 6906 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((𝐹𝑓𝐽) ∘𝑓 + 𝐽)‘𝑘) = (((𝐹𝑓𝐽)‘𝑘) + (𝐽𝑘)))
2641, 2, 245, 246, 257, 258, 259, 263climadd 14362 . . . . 5 (⊤ → ((𝐹𝑓𝐽) ∘𝑓 + 𝐽) ⇝ (0 + ((π↑2) / 6)))
26588, 264eqbrtrrd 4677 . . . 4 (⊤ → 𝐹 ⇝ (0 + ((π↑2) / 6)))
266100addid2i 10224 . . . 4 (0 + ((π↑2) / 6)) = ((π↑2) / 6)
267265, 21, 2663brtr3g 4686 . . 3 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2))) ⇝ ((π↑2) / 6))
2681, 2, 7, 19, 267isumclim 14488 . 2 (⊤ → Σ𝑘 ∈ ℕ (𝑘↑-2) = ((π↑2) / 6))
269268trud 1493 1 Σ𝑘 ∈ ℕ (𝑘↑-2) = ((π↑2) / 6)
Colors of variables: wff setvar class
Syntax hints:  wa 384  w3a 1037   = wceq 1483  wtru 1484  wcel 1990  Vcvv 3200  wss 3574  {csn 4177   class class class wbr 4653  cmpt 4729   × cxp 5112   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  6c6 11074  cz 11377  cuz 11687  seqcseq 12801  cexp 12860  cli 14215  Σcsu 14416  πcpi 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-0p 23437  df-limc 23630  df-dv 23631  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046
This theorem is referenced by:  basel  24816
  Copyright terms: Public domain W3C validator