MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcvx Structured version   Visualization version   GIF version

Theorem blcvx 22601
Description: An open ball in the complex numbers is a convex set. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
blcvx.s 𝑆 = (𝑃(ball‘(abs ∘ − ))𝑅)
Assertion
Ref Expression
blcvx (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ 𝑆)

Proof of Theorem blcvx
StepHypRef Expression
1 simpr3 1069 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝑇 ∈ (0[,]1))
2 0re 10040 . . . . . . . . 9 0 ∈ ℝ
3 1re 10039 . . . . . . . . 9 1 ∈ ℝ
42, 3elicc2i 12239 . . . . . . . 8 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
51, 4sylib 208 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
65simp1d 1073 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℝ)
76recnd 10068 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℂ)
8 simpr1 1067 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝐴𝑆)
9 blcvx.s . . . . . . . 8 𝑆 = (𝑃(ball‘(abs ∘ − ))𝑅)
108, 9syl6eleq 2711 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝐴 ∈ (𝑃(ball‘(abs ∘ − ))𝑅))
11 cnxmet 22576 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
1211a1i 11 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs ∘ − ) ∈ (∞Met‘ℂ))
13 simpll 790 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝑃 ∈ ℂ)
14 simplr 792 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝑅 ∈ ℝ*)
15 elbl 22193 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘(abs ∘ − ))𝑅) ↔ (𝐴 ∈ ℂ ∧ (𝑃(abs ∘ − )𝐴) < 𝑅)))
1612, 13, 14, 15syl3anc 1326 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝐴 ∈ (𝑃(ball‘(abs ∘ − ))𝑅) ↔ (𝐴 ∈ ℂ ∧ (𝑃(abs ∘ − )𝐴) < 𝑅)))
1710, 16mpbid 222 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝐴 ∈ ℂ ∧ (𝑃(abs ∘ − )𝐴) < 𝑅))
1817simpld 475 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝐴 ∈ ℂ)
197, 18mulcld 10060 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑇 · 𝐴) ∈ ℂ)
20 resubcl 10345 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
213, 6, 20sylancr 695 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈ ℝ)
2221recnd 10068 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈ ℂ)
23 simpr2 1068 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝐵𝑆)
2423, 9syl6eleq 2711 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝐵 ∈ (𝑃(ball‘(abs ∘ − ))𝑅))
25 elbl 22193 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝐵 ∈ (𝑃(ball‘(abs ∘ − ))𝑅) ↔ (𝐵 ∈ ℂ ∧ (𝑃(abs ∘ − )𝐵) < 𝑅)))
2612, 13, 14, 25syl3anc 1326 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝐵 ∈ (𝑃(ball‘(abs ∘ − ))𝑅) ↔ (𝐵 ∈ ℂ ∧ (𝑃(abs ∘ − )𝐵) < 𝑅)))
2724, 26mpbid 222 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝐵 ∈ ℂ ∧ (𝑃(abs ∘ − )𝐵) < 𝑅))
2827simpld 475 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝐵 ∈ ℂ)
2922, 28mulcld 10060 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · 𝐵) ∈ ℂ)
3019, 29addcld 10059 . . 3 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ ℂ)
31 eqid 2622 . . . . . . 7 (abs ∘ − ) = (abs ∘ − )
3231cnmetdval 22574 . . . . . 6 ((𝑃 ∈ ℂ ∧ ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ ℂ) → (𝑃(abs ∘ − )((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = (abs‘(𝑃 − ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))))
3313, 30, 32syl2anc 693 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃(abs ∘ − )((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = (abs‘(𝑃 − ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))))
347, 13, 18subdid 10486 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑇 · (𝑃𝐴)) = ((𝑇 · 𝑃) − (𝑇 · 𝐴)))
3522, 13, 28subdid 10486 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · (𝑃𝐵)) = (((1 − 𝑇) · 𝑃) − ((1 − 𝑇) · 𝐵)))
3634, 35oveq12d 6668 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵))) = (((𝑇 · 𝑃) − (𝑇 · 𝐴)) + (((1 − 𝑇) · 𝑃) − ((1 − 𝑇) · 𝐵))))
377, 13mulcld 10060 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑇 · 𝑃) ∈ ℂ)
3822, 13mulcld 10060 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · 𝑃) ∈ ℂ)
3937, 38, 19, 29addsub4d 10439 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (((𝑇 · 𝑃) + ((1 − 𝑇) · 𝑃)) − ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = (((𝑇 · 𝑃) − (𝑇 · 𝐴)) + (((1 − 𝑇) · 𝑃) − ((1 − 𝑇) · 𝐵))))
40 ax-1cn 9994 . . . . . . . . . . 11 1 ∈ ℂ
41 pncan3 10289 . . . . . . . . . . 11 ((𝑇 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑇 + (1 − 𝑇)) = 1)
427, 40, 41sylancl 694 . . . . . . . . . 10 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑇 + (1 − 𝑇)) = 1)
4342oveq1d 6665 . . . . . . . . 9 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑃) = (1 · 𝑃))
447, 22, 13adddird 10065 . . . . . . . . 9 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑃) = ((𝑇 · 𝑃) + ((1 − 𝑇) · 𝑃)))
45 mulid2 10038 . . . . . . . . . 10 (𝑃 ∈ ℂ → (1 · 𝑃) = 𝑃)
4645ad2antrr 762 . . . . . . . . 9 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (1 · 𝑃) = 𝑃)
4743, 44, 463eqtr3d 2664 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑃) + ((1 − 𝑇) · 𝑃)) = 𝑃)
4847oveq1d 6665 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (((𝑇 · 𝑃) + ((1 − 𝑇) · 𝑃)) − ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = (𝑃 − ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
4936, 39, 483eqtr2d 2662 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵))) = (𝑃 − ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
5049fveq2d 6195 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) = (abs‘(𝑃 − ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))))
5133, 50eqtr4d 2659 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃(abs ∘ − )((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))))
5213, 18subcld 10392 . . . . . . . . . 10 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃𝐴) ∈ ℂ)
537, 52mulcld 10060 . . . . . . . . 9 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑇 · (𝑃𝐴)) ∈ ℂ)
5413, 28subcld 10392 . . . . . . . . . 10 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃𝐵) ∈ ℂ)
5522, 54mulcld 10060 . . . . . . . . 9 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · (𝑃𝐵)) ∈ ℂ)
5653, 55addcld 10059 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵))) ∈ ℂ)
5756abscld 14175 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) ∈ ℝ)
5857adantr 481 . . . . . 6 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) ∈ ℝ)
5953abscld 14175 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑇 · (𝑃𝐴))) ∈ ℝ)
6055abscld 14175 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘((1 − 𝑇) · (𝑃𝐵))) ∈ ℝ)
6159, 60readdcld 10069 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) ∈ ℝ)
6261adantr 481 . . . . . 6 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) ∈ ℝ)
63 simpr 477 . . . . . 6 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → 𝑅 ∈ ℝ)
6453, 55abstrid 14195 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) ≤ ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))))
6564adantr 481 . . . . . 6 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) ≤ ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))))
66 oveq1 6657 . . . . . . . . . . . 12 (𝑇 = 0 → (𝑇 · (𝑃𝐴)) = (0 · (𝑃𝐴)))
6752mul02d 10234 . . . . . . . . . . . 12 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (0 · (𝑃𝐴)) = 0)
6866, 67sylan9eqr 2678 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑇 = 0) → (𝑇 · (𝑃𝐴)) = 0)
6968abs00bd 14031 . . . . . . . . . 10 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑇 = 0) → (abs‘(𝑇 · (𝑃𝐴))) = 0)
70 oveq2 6658 . . . . . . . . . . . . . 14 (𝑇 = 0 → (1 − 𝑇) = (1 − 0))
71 1m0e1 11131 . . . . . . . . . . . . . 14 (1 − 0) = 1
7270, 71syl6eq 2672 . . . . . . . . . . . . 13 (𝑇 = 0 → (1 − 𝑇) = 1)
7372oveq1d 6665 . . . . . . . . . . . 12 (𝑇 = 0 → ((1 − 𝑇) · (𝑃𝐵)) = (1 · (𝑃𝐵)))
7454mulid2d 10058 . . . . . . . . . . . 12 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (1 · (𝑃𝐵)) = (𝑃𝐵))
7573, 74sylan9eqr 2678 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑇 = 0) → ((1 − 𝑇) · (𝑃𝐵)) = (𝑃𝐵))
7675fveq2d 6195 . . . . . . . . . 10 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑇 = 0) → (abs‘((1 − 𝑇) · (𝑃𝐵))) = (abs‘(𝑃𝐵)))
7769, 76oveq12d 6668 . . . . . . . . 9 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑇 = 0) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) = (0 + (abs‘(𝑃𝐵))))
7854abscld 14175 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑃𝐵)) ∈ ℝ)
7978recnd 10068 . . . . . . . . . . . . 13 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑃𝐵)) ∈ ℂ)
8079addid2d 10237 . . . . . . . . . . . 12 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (0 + (abs‘(𝑃𝐵))) = (abs‘(𝑃𝐵)))
8131cnmetdval 22574 . . . . . . . . . . . . 13 ((𝑃 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑃(abs ∘ − )𝐵) = (abs‘(𝑃𝐵)))
8213, 28, 81syl2anc 693 . . . . . . . . . . . 12 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃(abs ∘ − )𝐵) = (abs‘(𝑃𝐵)))
8380, 82eqtr4d 2659 . . . . . . . . . . 11 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (0 + (abs‘(𝑃𝐵))) = (𝑃(abs ∘ − )𝐵))
8427simprd 479 . . . . . . . . . . 11 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃(abs ∘ − )𝐵) < 𝑅)
8583, 84eqbrtrd 4675 . . . . . . . . . 10 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (0 + (abs‘(𝑃𝐵))) < 𝑅)
8685adantr 481 . . . . . . . . 9 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑇 = 0) → (0 + (abs‘(𝑃𝐵))) < 𝑅)
8777, 86eqbrtrd 4675 . . . . . . . 8 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑇 = 0) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) < 𝑅)
8887adantlr 751 . . . . . . 7 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 = 0) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) < 𝑅)
897, 52absmuld 14193 . . . . . . . . . . . 12 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑇 · (𝑃𝐴))) = ((abs‘𝑇) · (abs‘(𝑃𝐴))))
905simp2d 1074 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 0 ≤ 𝑇)
916, 90absidd 14161 . . . . . . . . . . . . 13 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘𝑇) = 𝑇)
9291oveq1d 6665 . . . . . . . . . . . 12 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((abs‘𝑇) · (abs‘(𝑃𝐴))) = (𝑇 · (abs‘(𝑃𝐴))))
9389, 92eqtrd 2656 . . . . . . . . . . 11 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑇 · (𝑃𝐴))) = (𝑇 · (abs‘(𝑃𝐴))))
9493ad2antrr 762 . . . . . . . . . 10 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → (abs‘(𝑇 · (𝑃𝐴))) = (𝑇 · (abs‘(𝑃𝐴))))
9531cnmetdval 22574 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑃(abs ∘ − )𝐴) = (abs‘(𝑃𝐴)))
9613, 18, 95syl2anc 693 . . . . . . . . . . . . 13 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃(abs ∘ − )𝐴) = (abs‘(𝑃𝐴)))
9717simprd 479 . . . . . . . . . . . . 13 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃(abs ∘ − )𝐴) < 𝑅)
9896, 97eqbrtrrd 4677 . . . . . . . . . . . 12 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑃𝐴)) < 𝑅)
9998ad2antrr 762 . . . . . . . . . . 11 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → (abs‘(𝑃𝐴)) < 𝑅)
10052abscld 14175 . . . . . . . . . . . . 13 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑃𝐴)) ∈ ℝ)
101100ad2antrr 762 . . . . . . . . . . . 12 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → (abs‘(𝑃𝐴)) ∈ ℝ)
102 simplr 792 . . . . . . . . . . . 12 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → 𝑅 ∈ ℝ)
1036ad2antrr 762 . . . . . . . . . . . 12 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → 𝑇 ∈ ℝ)
1042a1i 11 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 0 ∈ ℝ)
105104, 6, 90leltned 10190 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (0 < 𝑇𝑇 ≠ 0))
106105biimpar 502 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑇 ≠ 0) → 0 < 𝑇)
107106adantlr 751 . . . . . . . . . . . 12 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → 0 < 𝑇)
108 ltmul2 10874 . . . . . . . . . . . 12 (((abs‘(𝑃𝐴)) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ (𝑇 ∈ ℝ ∧ 0 < 𝑇)) → ((abs‘(𝑃𝐴)) < 𝑅 ↔ (𝑇 · (abs‘(𝑃𝐴))) < (𝑇 · 𝑅)))
109101, 102, 103, 107, 108syl112anc 1330 . . . . . . . . . . 11 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → ((abs‘(𝑃𝐴)) < 𝑅 ↔ (𝑇 · (abs‘(𝑃𝐴))) < (𝑇 · 𝑅)))
11099, 109mpbid 222 . . . . . . . . . 10 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → (𝑇 · (abs‘(𝑃𝐴))) < (𝑇 · 𝑅))
11194, 110eqbrtrd 4675 . . . . . . . . 9 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → (abs‘(𝑇 · (𝑃𝐴))) < (𝑇 · 𝑅))
11222, 54absmuld 14193 . . . . . . . . . . . . 13 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘((1 − 𝑇) · (𝑃𝐵))) = ((abs‘(1 − 𝑇)) · (abs‘(𝑃𝐵))))
1133a1i 11 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 1 ∈ ℝ)
1145simp3d 1075 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝑇 ≤ 1)
1156, 113, 114abssubge0d 14170 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(1 − 𝑇)) = (1 − 𝑇))
116115oveq1d 6665 . . . . . . . . . . . . 13 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((abs‘(1 − 𝑇)) · (abs‘(𝑃𝐵))) = ((1 − 𝑇) · (abs‘(𝑃𝐵))))
117112, 116eqtrd 2656 . . . . . . . . . . . 12 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘((1 − 𝑇) · (𝑃𝐵))) = ((1 − 𝑇) · (abs‘(𝑃𝐵))))
118117adantr 481 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘((1 − 𝑇) · (𝑃𝐵))) = ((1 − 𝑇) · (abs‘(𝑃𝐵))))
11978adantr 481 . . . . . . . . . . . 12 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘(𝑃𝐵)) ∈ ℝ)
120 subge0 10541 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (0 ≤ (1 − 𝑇) ↔ 𝑇 ≤ 1))
1213, 6, 120sylancr 695 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (0 ≤ (1 − 𝑇) ↔ 𝑇 ≤ 1))
122114, 121mpbird 247 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 0 ≤ (1 − 𝑇))
12321, 122jca 554 . . . . . . . . . . . . 13 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((1 − 𝑇) ∈ ℝ ∧ 0 ≤ (1 − 𝑇)))
124123adantr 481 . . . . . . . . . . . 12 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((1 − 𝑇) ∈ ℝ ∧ 0 ≤ (1 − 𝑇)))
12582, 84eqbrtrrd 4677 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑃𝐵)) < 𝑅)
126125adantr 481 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘(𝑃𝐵)) < 𝑅)
127 ltle 10126 . . . . . . . . . . . . . 14 (((abs‘(𝑃𝐵)) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘(𝑃𝐵)) < 𝑅 → (abs‘(𝑃𝐵)) ≤ 𝑅))
12878, 127sylan 488 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((abs‘(𝑃𝐵)) < 𝑅 → (abs‘(𝑃𝐵)) ≤ 𝑅))
129126, 128mpd 15 . . . . . . . . . . . 12 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘(𝑃𝐵)) ≤ 𝑅)
130 lemul2a 10878 . . . . . . . . . . . 12 ((((abs‘(𝑃𝐵)) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ((1 − 𝑇) ∈ ℝ ∧ 0 ≤ (1 − 𝑇))) ∧ (abs‘(𝑃𝐵)) ≤ 𝑅) → ((1 − 𝑇) · (abs‘(𝑃𝐵))) ≤ ((1 − 𝑇) · 𝑅))
131119, 63, 124, 129, 130syl31anc 1329 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((1 − 𝑇) · (abs‘(𝑃𝐵))) ≤ ((1 − 𝑇) · 𝑅))
132118, 131eqbrtrd 4675 . . . . . . . . . 10 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘((1 − 𝑇) · (𝑃𝐵))) ≤ ((1 − 𝑇) · 𝑅))
133132adantr 481 . . . . . . . . 9 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → (abs‘((1 − 𝑇) · (𝑃𝐵))) ≤ ((1 − 𝑇) · 𝑅))
13459adantr 481 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘(𝑇 · (𝑃𝐴))) ∈ ℝ)
13560adantr 481 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘((1 − 𝑇) · (𝑃𝐵))) ∈ ℝ)
136 remulcl 10021 . . . . . . . . . . . 12 ((𝑇 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑇 · 𝑅) ∈ ℝ)
1376, 136sylan 488 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (𝑇 · 𝑅) ∈ ℝ)
138 remulcl 10021 . . . . . . . . . . . 12 (((1 − 𝑇) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((1 − 𝑇) · 𝑅) ∈ ℝ)
13921, 138sylan 488 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((1 − 𝑇) · 𝑅) ∈ ℝ)
140 ltleadd 10511 . . . . . . . . . . 11 ((((abs‘(𝑇 · (𝑃𝐴))) ∈ ℝ ∧ (abs‘((1 − 𝑇) · (𝑃𝐵))) ∈ ℝ) ∧ ((𝑇 · 𝑅) ∈ ℝ ∧ ((1 − 𝑇) · 𝑅) ∈ ℝ)) → (((abs‘(𝑇 · (𝑃𝐴))) < (𝑇 · 𝑅) ∧ (abs‘((1 − 𝑇) · (𝑃𝐵))) ≤ ((1 − 𝑇) · 𝑅)) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) < ((𝑇 · 𝑅) + ((1 − 𝑇) · 𝑅))))
141134, 135, 137, 139, 140syl22anc 1327 . . . . . . . . . 10 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (((abs‘(𝑇 · (𝑃𝐴))) < (𝑇 · 𝑅) ∧ (abs‘((1 − 𝑇) · (𝑃𝐵))) ≤ ((1 − 𝑇) · 𝑅)) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) < ((𝑇 · 𝑅) + ((1 − 𝑇) · 𝑅))))
142141adantr 481 . . . . . . . . 9 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → (((abs‘(𝑇 · (𝑃𝐴))) < (𝑇 · 𝑅) ∧ (abs‘((1 − 𝑇) · (𝑃𝐵))) ≤ ((1 − 𝑇) · 𝑅)) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) < ((𝑇 · 𝑅) + ((1 − 𝑇) · 𝑅))))
143111, 133, 142mp2and 715 . . . . . . . 8 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) < ((𝑇 · 𝑅) + ((1 − 𝑇) · 𝑅)))
14442oveq1d 6665 . . . . . . . . . . 11 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑅) = (1 · 𝑅))
145144adantr 481 . . . . . . . . . 10 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((𝑇 + (1 − 𝑇)) · 𝑅) = (1 · 𝑅))
1467adantr 481 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → 𝑇 ∈ ℂ)
14722adantr 481 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (1 − 𝑇) ∈ ℂ)
14863recnd 10068 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → 𝑅 ∈ ℂ)
149146, 147, 148adddird 10065 . . . . . . . . . 10 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((𝑇 + (1 − 𝑇)) · 𝑅) = ((𝑇 · 𝑅) + ((1 − 𝑇) · 𝑅)))
150148mulid2d 10058 . . . . . . . . . 10 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (1 · 𝑅) = 𝑅)
151145, 149, 1503eqtr3d 2664 . . . . . . . . 9 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((𝑇 · 𝑅) + ((1 − 𝑇) · 𝑅)) = 𝑅)
152151adantr 481 . . . . . . . 8 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → ((𝑇 · 𝑅) + ((1 − 𝑇) · 𝑅)) = 𝑅)
153143, 152breqtrd 4679 . . . . . . 7 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) < 𝑅)
15488, 153pm2.61dane 2881 . . . . . 6 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) < 𝑅)
15558, 62, 63, 65, 154lelttrd 10195 . . . . 5 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) < 𝑅)
15657adantr 481 . . . . . . 7 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 = +∞) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) ∈ ℝ)
157 ltpnf 11954 . . . . . . 7 ((abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) ∈ ℝ → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) < +∞)
158156, 157syl 17 . . . . . 6 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 = +∞) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) < +∞)
159 simpr 477 . . . . . 6 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 = +∞) → 𝑅 = +∞)
160158, 159breqtrrd 4681 . . . . 5 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 = +∞) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) < 𝑅)
161 0xr 10086 . . . . . . . . . . 11 0 ∈ ℝ*
162161a1i 11 . . . . . . . . . 10 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 0 ∈ ℝ*)
163100rexrd 10089 . . . . . . . . . 10 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑃𝐴)) ∈ ℝ*)
16452absge0d 14183 . . . . . . . . . 10 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 0 ≤ (abs‘(𝑃𝐴)))
165162, 163, 14, 164, 98xrlelttrd 11991 . . . . . . . . 9 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 0 < 𝑅)
166 xrltle 11982 . . . . . . . . . 10 ((0 ∈ ℝ*𝑅 ∈ ℝ*) → (0 < 𝑅 → 0 ≤ 𝑅))
167161, 14, 166sylancr 695 . . . . . . . . 9 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (0 < 𝑅 → 0 ≤ 𝑅))
168165, 167mpd 15 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 0 ≤ 𝑅)
169 ge0nemnf 12004 . . . . . . . 8 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅) → 𝑅 ≠ -∞)
17014, 168, 169syl2anc 693 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝑅 ≠ -∞)
17114, 170jca 554 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑅 ∈ ℝ*𝑅 ≠ -∞))
172 xrnemnf 11951 . . . . . 6 ((𝑅 ∈ ℝ*𝑅 ≠ -∞) ↔ (𝑅 ∈ ℝ ∨ 𝑅 = +∞))
173171, 172sylib 208 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑅 ∈ ℝ ∨ 𝑅 = +∞))
174155, 160, 173mpjaodan 827 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) < 𝑅)
17551, 174eqbrtrd 4675 . . 3 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃(abs ∘ − )((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < 𝑅)
176 elbl 22193 . . . 4 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝑃(ball‘(abs ∘ − ))𝑅) ↔ (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ ℂ ∧ (𝑃(abs ∘ − )((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < 𝑅)))
17712, 13, 14, 176syl3anc 1326 . . 3 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝑃(ball‘(abs ∘ − ))𝑅) ↔ (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ ℂ ∧ (𝑃(abs ∘ − )((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < 𝑅)))
17830, 175, 177mpbir2and 957 . 2 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝑃(ball‘(abs ∘ − ))𝑅))
179178, 9syl6eleqr 2712 1 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  ccom 5118  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  cmin 10266  [,]cicc 12178  abscabs 13974  ∞Metcxmt 19731  ballcbl 19733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-icc 12182  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741
This theorem is referenced by:  dvlipcn  23757  blsconn  31226
  Copyright terms: Public domain W3C validator