MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlipcn Structured version   Visualization version   GIF version

Theorem dvlipcn 23757
Description: A complex function with derivative bounded by 𝑀 on an open ball is Lipschitz continuous with Lipschitz constant equal to 𝑀. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
dvlipcn.x (𝜑𝑋 ⊆ ℂ)
dvlipcn.f (𝜑𝐹:𝑋⟶ℂ)
dvlipcn.a (𝜑𝐴 ∈ ℂ)
dvlipcn.r (𝜑𝑅 ∈ ℝ*)
dvlipcn.b 𝐵 = (𝐴(ball‘(abs ∘ − ))𝑅)
dvlipcn.d (𝜑𝐵 ⊆ dom (ℂ D 𝐹))
dvlipcn.m (𝜑𝑀 ∈ ℝ)
dvlipcn.l ((𝜑𝑥𝐵) → (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
Assertion
Ref Expression
dvlipcn ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem dvlipcn
Dummy variables 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1elunit 12291 . . 3 1 ∈ (0[,]1)
2 0elunit 12290 . . 3 0 ∈ (0[,]1)
3 0red 10041 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 0 ∈ ℝ)
4 1red 10055 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 1 ∈ ℝ)
5 dvlipcn.d . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ dom (ℂ D 𝐹))
6 ssid 3624 . . . . . . . . . . . . . . . 16 ℂ ⊆ ℂ
76a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ⊆ ℂ)
8 dvlipcn.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑋⟶ℂ)
9 dvlipcn.x . . . . . . . . . . . . . . 15 (𝜑𝑋 ⊆ ℂ)
107, 8, 9dvbss 23665 . . . . . . . . . . . . . 14 (𝜑 → dom (ℂ D 𝐹) ⊆ 𝑋)
115, 10sstrd 3613 . . . . . . . . . . . . 13 (𝜑𝐵𝑋)
1211, 9sstrd 3613 . . . . . . . . . . . 12 (𝜑𝐵 ⊆ ℂ)
1312adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝐵 ⊆ ℂ)
14 simprl 794 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
1513, 14sseldd 3604 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑌 ∈ ℂ)
1615adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑌 ∈ ℂ)
17 unitssre 12319 . . . . . . . . . . 11 (0[,]1) ⊆ ℝ
18 ax-resscn 9993 . . . . . . . . . . 11 ℝ ⊆ ℂ
1917, 18sstri 3612 . . . . . . . . . 10 (0[,]1) ⊆ ℂ
20 simpr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
2119, 20sseldi 3601 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
2216, 21mulcomd 10061 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝑌 · 𝑡) = (𝑡 · 𝑌))
23 simprr 796 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
2413, 23sseldd 3604 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑍 ∈ ℂ)
2524adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑍 ∈ ℂ)
26 iirev 22728 . . . . . . . . . . 11 (𝑡 ∈ (0[,]1) → (1 − 𝑡) ∈ (0[,]1))
2726adantl 482 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ (0[,]1))
2819, 27sseldi 3601 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℂ)
2925, 28mulcomd 10061 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝑍 · (1 − 𝑡)) = ((1 − 𝑡) · 𝑍))
3022, 29oveq12d 6668 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)))
31 dvlipcn.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3231ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐴 ∈ ℂ)
33 dvlipcn.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
3433ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑅 ∈ ℝ*)
3514adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑌𝐵)
3623adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑍𝐵)
37 dvlipcn.b . . . . . . . . 9 𝐵 = (𝐴(ball‘(abs ∘ − ))𝑅)
3837blcvx 22601 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝑌𝐵𝑍𝐵𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)) ∈ 𝐵)
3932, 34, 35, 36, 20, 38syl23anc 1333 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)) ∈ 𝐵)
4030, 39eqeltrd 2701 . . . . . 6 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝐵)
41 eqidd 2623 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
428, 11fssresd 6071 . . . . . . . . 9 (𝜑 → (𝐹𝐵):𝐵⟶ℂ)
4342feqmptd 6249 . . . . . . . 8 (𝜑 → (𝐹𝐵) = (𝑧𝐵 ↦ ((𝐹𝐵)‘𝑧)))
44 fvres 6207 . . . . . . . . 9 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
4544mpteq2ia 4740 . . . . . . . 8 (𝑧𝐵 ↦ ((𝐹𝐵)‘𝑧)) = (𝑧𝐵 ↦ (𝐹𝑧))
4643, 45syl6eq 2672 . . . . . . 7 (𝜑 → (𝐹𝐵) = (𝑧𝐵 ↦ (𝐹𝑧)))
4746adantr 481 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹𝐵) = (𝑧𝐵 ↦ (𝐹𝑧)))
48 fveq2 6191 . . . . . 6 (𝑧 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → (𝐹𝑧) = (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
4940, 41, 47, 48fmptco 6396 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝐹𝐵) ∘ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))
50 eqid 2622 . . . . . . . 8 (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))
5140, 50fmptd 6385 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵)
52 eqid 2622 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5352addcn 22668 . . . . . . . . . 10 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
5453a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
55 cncfmptc 22714 . . . . . . . . . . . 12 ((𝑌 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ))
5619, 6, 55mp3an23 1416 . . . . . . . . . . 11 (𝑌 ∈ ℂ → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ))
5715, 56syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ))
58 cncfmptid 22715 . . . . . . . . . . . 12 (((0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
5919, 6, 58mp2an 708 . . . . . . . . . . 11 (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ)
6059a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
6157, 60mulcncf 23215 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝑌 · 𝑡)) ∈ ((0[,]1)–cn→ℂ))
62 cncfmptc 22714 . . . . . . . . . . . 12 ((𝑍 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ))
6319, 6, 62mp3an23 1416 . . . . . . . . . . 11 (𝑍 ∈ ℂ → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ))
6424, 63syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ))
6552subcn 22669 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6665a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
67 ax-1cn 9994 . . . . . . . . . . . . 13 1 ∈ ℂ
68 cncfmptc 22714 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
6967, 19, 6, 68mp3an 1424 . . . . . . . . . . . 12 (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ)
7069a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
7152, 66, 70, 60cncfmpt2f 22717 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (1 − 𝑡)) ∈ ((0[,]1)–cn→ℂ))
7264, 71mulcncf 23215 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝑍 · (1 − 𝑡))) ∈ ((0[,]1)–cn→ℂ))
7352, 54, 61, 72cncfmpt2f 22717 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn→ℂ))
74 cncffvrn 22701 . . . . . . . 8 ((𝐵 ⊆ ℂ ∧ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn→ℂ)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn𝐵) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵))
7513, 73, 74syl2anc 693 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn𝐵) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵))
7651, 75mpbird 247 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn𝐵))
776a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℂ ⊆ ℂ)
7842adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹𝐵):𝐵⟶ℂ)
7952cnfldtop 22587 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ Top
8052cnfldtopon 22586 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
8180toponunii 20721 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
8281restid 16094 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
8379, 82ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
8483eqcomi 2631 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
8552, 84dvres 23675 . . . . . . . . . . . 12 (((ℂ ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
867, 8, 9, 12, 85syl22anc 1327 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
87 cnxmet 22576 . . . . . . . . . . . . . . . 16 (abs ∘ − ) ∈ (∞Met‘ℂ)
8887a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
8952cnfldtopn 22585 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
9089blopn 22305 . . . . . . . . . . . . . . 15 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝐴(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld))
9188, 31, 33, 90syl3anc 1326 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld))
9237, 91syl5eqel 2705 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (TopOpen‘ℂfld))
93 isopn3i 20886 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐵 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵)
9479, 92, 93sylancr 695 . . . . . . . . . . . 12 (𝜑 → ((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵)
9594reseq2d 5396 . . . . . . . . . . 11 (𝜑 → ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
9686, 95eqtrd 2656 . . . . . . . . . 10 (𝜑 → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
9796dmeqd 5326 . . . . . . . . 9 (𝜑 → dom (ℂ D (𝐹𝐵)) = dom ((ℂ D 𝐹) ↾ 𝐵))
98 dmres 5419 . . . . . . . . . 10 dom ((ℂ D 𝐹) ↾ 𝐵) = (𝐵 ∩ dom (ℂ D 𝐹))
99 df-ss 3588 . . . . . . . . . . 11 (𝐵 ⊆ dom (ℂ D 𝐹) ↔ (𝐵 ∩ dom (ℂ D 𝐹)) = 𝐵)
1005, 99sylib 208 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ dom (ℂ D 𝐹)) = 𝐵)
10198, 100syl5eq 2668 . . . . . . . . 9 (𝜑 → dom ((ℂ D 𝐹) ↾ 𝐵) = 𝐵)
10297, 101eqtrd 2656 . . . . . . . 8 (𝜑 → dom (ℂ D (𝐹𝐵)) = 𝐵)
103102adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (ℂ D (𝐹𝐵)) = 𝐵)
104 dvcn 23684 . . . . . . 7 (((ℂ ⊆ ℂ ∧ (𝐹𝐵):𝐵⟶ℂ ∧ 𝐵 ⊆ ℂ) ∧ dom (ℂ D (𝐹𝐵)) = 𝐵) → (𝐹𝐵) ∈ (𝐵cn→ℂ))
10577, 78, 13, 103, 104syl31anc 1329 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹𝐵) ∈ (𝐵cn→ℂ))
10676, 105cncfco 22710 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝐹𝐵) ∘ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ((0[,]1)–cn→ℂ))
10749, 106eqeltrrd 2702 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ((0[,]1)–cn→ℂ))
10818a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℝ ⊆ ℂ)
10917a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0[,]1) ⊆ ℝ)
1108ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐹:𝑋⟶ℂ)
11111ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐵𝑋)
112111, 40sseldd 3604 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝑋)
113110, 112ffvelrnd 6360 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ)
11452tgioo2 22606 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
115 1re 10039 . . . . . . . . 9 1 ∈ ℝ
116 iccntr 22624 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
1173, 115, 116sylancl 694 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
118108, 109, 113, 114, 52, 117dvmptntr 23734 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))))
119 reelprrecn 10028 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
120119a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℝ ∈ {ℝ, ℂ})
121 cnelprrecn 10029 . . . . . . . . 9 ℂ ∈ {ℝ, ℂ}
122121a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℂ ∈ {ℝ, ℂ})
123 ioossicc 12259 . . . . . . . . . 10 (0(,)1) ⊆ (0[,]1)
124123sseli 3599 . . . . . . . . 9 (𝑡 ∈ (0(,)1) → 𝑡 ∈ (0[,]1))
125124, 40sylan2 491 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝐵)
12615, 24subcld 10392 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌𝑍) ∈ ℂ)
127126adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑌𝑍) ∈ ℂ)
12811adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝐵𝑋)
129128sselda 3603 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝐵) → 𝑧𝑋)
1308adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝐹:𝑋⟶ℂ)
131130ffvelrnda 6359 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
132129, 131syldan 487 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝐵) → (𝐹𝑧) ∈ ℂ)
133 fvexd 6203 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝐵) → ((ℂ D 𝐹)‘𝑧) ∈ V)
13415adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑌 ∈ ℂ)
135124, 21sylan2 491 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
136134, 135mulcld 10060 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑌 · 𝑡) ∈ ℂ)
137 1red 10055 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 1 ∈ ℝ)
138 simpr 477 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
139138recnd 10068 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
140 1red 10055 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℝ)
141120dvmptid 23720 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1))
142 ioossre 12235 . . . . . . . . . . . . . 14 (0(,)1) ⊆ ℝ
143142a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0(,)1) ⊆ ℝ)
144 iooretop 22569 . . . . . . . . . . . . . 14 (0(,)1) ∈ (topGen‘ran (,))
145144a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0(,)1) ∈ (topGen‘ran (,)))
146120, 139, 140, 141, 143, 114, 52, 145dvmptres 23726 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ 𝑡)) = (𝑡 ∈ (0(,)1) ↦ 1))
147120, 135, 137, 146, 15dvmptcmul 23727 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑌 · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (𝑌 · 1)))
14815mulid1d 10057 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 · 1) = 𝑌)
149148mpteq2dv 4745 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑌 · 1)) = (𝑡 ∈ (0(,)1) ↦ 𝑌))
150147, 149eqtrd 2656 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑌 · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ 𝑌))
15124adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑍 ∈ ℂ)
152124, 28sylan2 491 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
153151, 152mulcld 10060 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑍 · (1 − 𝑡)) ∈ ℂ)
154 negex 10279 . . . . . . . . . . 11 -𝑍 ∈ V
155154a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → -𝑍 ∈ V)
156 negex 10279 . . . . . . . . . . . . 13 -1 ∈ V
157156a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → -1 ∈ V)
158 1cnd 10056 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 1 ∈ ℂ)
159 0red 10041 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 0 ∈ ℝ)
160 1cnd 10056 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℂ)
161 0red 10041 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 0 ∈ ℝ)
162 1cnd 10056 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 1 ∈ ℂ)
163120, 162dvmptc 23721 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ ℝ ↦ 1)) = (𝑡 ∈ ℝ ↦ 0))
164120, 160, 161, 163, 143, 114, 52, 145dvmptres 23726 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ 1)) = (𝑡 ∈ (0(,)1) ↦ 0))
165120, 158, 159, 164, 135, 137, 146dvmptsub 23730 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (1 − 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (0 − 1)))
166 df-neg 10269 . . . . . . . . . . . . . 14 -1 = (0 − 1)
167166mpteq2i 4741 . . . . . . . . . . . . 13 (𝑡 ∈ (0(,)1) ↦ -1) = (𝑡 ∈ (0(,)1) ↦ (0 − 1))
168165, 167syl6eqr 2674 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (1 − 𝑡))) = (𝑡 ∈ (0(,)1) ↦ -1))
169120, 152, 157, 168, 24dvmptcmul 23727 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0(,)1) ↦ (𝑍 · -1)))
170 neg1cn 11124 . . . . . . . . . . . . . 14 -1 ∈ ℂ
171 mulcom 10022 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℂ ∧ -1 ∈ ℂ) → (𝑍 · -1) = (-1 · 𝑍))
17224, 170, 171sylancl 694 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · -1) = (-1 · 𝑍))
17324mulm1d 10482 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (-1 · 𝑍) = -𝑍)
174172, 173eqtrd 2656 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · -1) = -𝑍)
175174mpteq2dv 4745 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑍 · -1)) = (𝑡 ∈ (0(,)1) ↦ -𝑍))
176169, 175eqtrd 2656 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0(,)1) ↦ -𝑍))
177120, 136, 134, 150, 153, 155, 176dvmptadd 23723 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0(,)1) ↦ (𝑌 + -𝑍)))
17815, 24negsubd 10398 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 + -𝑍) = (𝑌𝑍))
179178mpteq2dv 4745 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑌 + -𝑍)) = (𝑡 ∈ (0(,)1) ↦ (𝑌𝑍)))
180177, 179eqtrd 2656 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0(,)1) ↦ (𝑌𝑍)))
1819adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑋 ⊆ ℂ)
18277, 130, 181, 13, 85syl22anc 1327 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
18394adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵)
184183reseq2d 5396 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
185182, 184eqtrd 2656 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
18647oveq2d 6666 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)) = (ℂ D (𝑧𝐵 ↦ (𝐹𝑧))))
187 dvfcn 23672 . . . . . . . . . . . . 13 (ℂ D (𝐹𝐵)):dom (ℂ D (𝐹𝐵))⟶ℂ
188103feq2d 6031 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D (𝐹𝐵)):dom (ℂ D (𝐹𝐵))⟶ℂ ↔ (ℂ D (𝐹𝐵)):𝐵⟶ℂ))
189187, 188mpbii 223 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)):𝐵⟶ℂ)
190185feq1d 6030 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D (𝐹𝐵)):𝐵⟶ℂ ↔ ((ℂ D 𝐹) ↾ 𝐵):𝐵⟶ℂ))
191189, 190mpbid 222 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ 𝐵):𝐵⟶ℂ)
192191feqmptd 6249 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ 𝐵) = (𝑧𝐵 ↦ (((ℂ D 𝐹) ↾ 𝐵)‘𝑧)))
193 fvres 6207 . . . . . . . . . . 11 (𝑧𝐵 → (((ℂ D 𝐹) ↾ 𝐵)‘𝑧) = ((ℂ D 𝐹)‘𝑧))
194193mpteq2ia 4740 . . . . . . . . . 10 (𝑧𝐵 ↦ (((ℂ D 𝐹) ↾ 𝐵)‘𝑧)) = (𝑧𝐵 ↦ ((ℂ D 𝐹)‘𝑧))
195192, 194syl6eq 2672 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ 𝐵) = (𝑧𝐵 ↦ ((ℂ D 𝐹)‘𝑧)))
196185, 186, 1953eqtr3d 2664 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝑧𝐵 ↦ (𝐹𝑧))) = (𝑧𝐵 ↦ ((ℂ D 𝐹)‘𝑧)))
197 fveq2 6191 . . . . . . . 8 (𝑧 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → ((ℂ D 𝐹)‘𝑧) = ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
198120, 122, 125, 127, 132, 133, 180, 196, 48, 197dvmptco 23735 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
199118, 198eqtrd 2656 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
200199dmeqd 5326 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
201 ovex 6678 . . . . . . 7 (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V
202201rgenw 2924 . . . . . 6 𝑡 ∈ (0(,)1)(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V
203 dmmptg 5632 . . . . . 6 (∀𝑡 ∈ (0(,)1)(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V → dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = (0(,)1))
204202, 203mp1i 13 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = (0(,)1))
205200, 204eqtrd 2656 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (0(,)1))
206 dvlipcn.m . . . . . 6 (𝜑𝑀 ∈ ℝ)
207206adantr 481 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑀 ∈ ℝ)
208126abscld 14175 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘(𝑌𝑍)) ∈ ℝ)
209207, 208remulcld 10070 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑀 · (abs‘(𝑌𝑍))) ∈ ℝ)
210199fveq1d 6193 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡) = ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))‘𝑡))
211 eqid 2622 . . . . . . . . . . . . 13 (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
212211fvmpt2 6291 . . . . . . . . . . . 12 ((𝑡 ∈ (0(,)1) ∧ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V) → ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
213201, 212mpan2 707 . . . . . . . . . . 11 (𝑡 ∈ (0(,)1) → ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
214210, 213sylan9eq 2676 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
215214fveq2d 6195 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = (abs‘(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
216 dvfcn 23672 . . . . . . . . . . 11 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
2175ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝐵 ⊆ dom (ℂ D 𝐹))
218217, 125sseldd 3604 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ dom (ℂ D 𝐹))
219 ffvelrn 6357 . . . . . . . . . . 11 (((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ∧ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ dom (ℂ D 𝐹)) → ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ)
220216, 218, 219sylancr 695 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ)
221220, 127absmuld 14193 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌𝑍))))
222215, 221eqtrd 2656 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌𝑍))))
223220abscld 14175 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ℝ)
224206ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑀 ∈ ℝ)
225127abscld 14175 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘(𝑌𝑍)) ∈ ℝ)
226127absge0d 14183 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 0 ≤ (abs‘(𝑌𝑍)))
227 dvlipcn.l . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
228227ralrimiva 2966 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐵 (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
229 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((ℂ D 𝐹)‘𝑥) = ((ℂ D 𝐹)‘𝑦))
230229fveq2d 6195 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (abs‘((ℂ D 𝐹)‘𝑥)) = (abs‘((ℂ D 𝐹)‘𝑦)))
231230breq1d 4663 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀 ↔ (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀))
232231cbvralv 3171 . . . . . . . . . . . 12 (∀𝑥𝐵 (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀 ↔ ∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀)
233228, 232sylib 208 . . . . . . . . . . 11 (𝜑 → ∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀)
234233ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀)
235 fveq2 6191 . . . . . . . . . . . . 13 (𝑦 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → ((ℂ D 𝐹)‘𝑦) = ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
236235fveq2d 6195 . . . . . . . . . . . 12 (𝑦 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → (abs‘((ℂ D 𝐹)‘𝑦)) = (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))
237236breq1d 4663 . . . . . . . . . . 11 (𝑦 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → ((abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀 ↔ (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ≤ 𝑀))
238237rspcv 3305 . . . . . . . . . 10 (((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝐵 → (∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀 → (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ≤ 𝑀))
239125, 234, 238sylc 65 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ≤ 𝑀)
240223, 224, 225, 226, 239lemul1ad 10963 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
241222, 240eqbrtrd 4675 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
242241ralrimiva 2966 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ∀𝑡 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
243 nfv 1843 . . . . . . 7 𝑧(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍)))
244 nfcv 2764 . . . . . . . . 9 𝑡abs
245 nfcv 2764 . . . . . . . . . . 11 𝑡
246 nfcv 2764 . . . . . . . . . . 11 𝑡 D
247 nfmpt1 4747 . . . . . . . . . . 11 𝑡(𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
248245, 246, 247nfov 6676 . . . . . . . . . 10 𝑡(ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))
249 nfcv 2764 . . . . . . . . . 10 𝑡𝑧
250248, 249nffv 6198 . . . . . . . . 9 𝑡((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)
251244, 250nffv 6198 . . . . . . . 8 𝑡(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧))
252 nfcv 2764 . . . . . . . 8 𝑡
253 nfcv 2764 . . . . . . . 8 𝑡(𝑀 · (abs‘(𝑌𝑍)))
254251, 252, 253nfbr 4699 . . . . . . 7 𝑡(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍)))
255 fveq2 6191 . . . . . . . . 9 (𝑡 = 𝑧 → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡) = ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧))
256255fveq2d 6195 . . . . . . . 8 (𝑡 = 𝑧 → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)))
257256breq1d 4663 . . . . . . 7 (𝑡 = 𝑧 → ((abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))) ↔ (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍)))))
258243, 254, 257cbvral 3167 . . . . . 6 (∀𝑡 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))) ↔ ∀𝑧 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
259242, 258sylib 208 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ∀𝑧 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
260259r19.21bi 2932 . . . 4 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
2613, 4, 107, 205, 209, 260dvlip 23756 . . 3 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ (1 ∈ (0[,]1) ∧ 0 ∈ (0[,]1))) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) ≤ ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))))
2621, 2, 261mpanr12 721 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) ≤ ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))))
263 oveq2 6658 . . . . . . . . 9 (𝑡 = 1 → (𝑌 · 𝑡) = (𝑌 · 1))
264 oveq2 6658 . . . . . . . . . . 11 (𝑡 = 1 → (1 − 𝑡) = (1 − 1))
265 1m1e0 11089 . . . . . . . . . . 11 (1 − 1) = 0
266264, 265syl6eq 2672 . . . . . . . . . 10 (𝑡 = 1 → (1 − 𝑡) = 0)
267266oveq2d 6666 . . . . . . . . 9 (𝑡 = 1 → (𝑍 · (1 − 𝑡)) = (𝑍 · 0))
268263, 267oveq12d 6668 . . . . . . . 8 (𝑡 = 1 → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑌 · 1) + (𝑍 · 0)))
269268fveq2d 6195 . . . . . . 7 (𝑡 = 1 → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝐹‘((𝑌 · 1) + (𝑍 · 0))))
270 eqid 2622 . . . . . . 7 (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
271 fvex 6201 . . . . . . 7 (𝐹‘((𝑌 · 1) + (𝑍 · 0))) ∈ V
272269, 270, 271fvmpt 6282 . . . . . 6 (1 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹‘((𝑌 · 1) + (𝑍 · 0))))
2731, 272ax-mp 5 . . . . 5 ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹‘((𝑌 · 1) + (𝑍 · 0)))
27424mul01d 10235 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · 0) = 0)
275148, 274oveq12d 6668 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 1) + (𝑍 · 0)) = (𝑌 + 0))
27615addid1d 10236 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 + 0) = 𝑌)
277275, 276eqtrd 2656 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 1) + (𝑍 · 0)) = 𝑌)
278277fveq2d 6195 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹‘((𝑌 · 1) + (𝑍 · 0))) = (𝐹𝑌))
279273, 278syl5eq 2668 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹𝑌))
280 oveq2 6658 . . . . . . . . 9 (𝑡 = 0 → (𝑌 · 𝑡) = (𝑌 · 0))
281 oveq2 6658 . . . . . . . . . . 11 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
282 1m0e1 11131 . . . . . . . . . . 11 (1 − 0) = 1
283281, 282syl6eq 2672 . . . . . . . . . 10 (𝑡 = 0 → (1 − 𝑡) = 1)
284283oveq2d 6666 . . . . . . . . 9 (𝑡 = 0 → (𝑍 · (1 − 𝑡)) = (𝑍 · 1))
285280, 284oveq12d 6668 . . . . . . . 8 (𝑡 = 0 → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑌 · 0) + (𝑍 · 1)))
286285fveq2d 6195 . . . . . . 7 (𝑡 = 0 → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝐹‘((𝑌 · 0) + (𝑍 · 1))))
287 fvex 6201 . . . . . . 7 (𝐹‘((𝑌 · 0) + (𝑍 · 1))) ∈ V
288286, 270, 287fvmpt 6282 . . . . . 6 (0 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹‘((𝑌 · 0) + (𝑍 · 1))))
2892, 288ax-mp 5 . . . . 5 ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹‘((𝑌 · 0) + (𝑍 · 1)))
29015mul01d 10235 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 · 0) = 0)
29124mulid1d 10057 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · 1) = 𝑍)
292290, 291oveq12d 6668 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 0) + (𝑍 · 1)) = (0 + 𝑍))
29324addid2d 10237 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0 + 𝑍) = 𝑍)
294292, 293eqtrd 2656 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 0) + (𝑍 · 1)) = 𝑍)
295294fveq2d 6195 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹‘((𝑌 · 0) + (𝑍 · 1))) = (𝐹𝑍))
296289, 295syl5eq 2668 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹𝑍))
297279, 296oveq12d 6668 . . 3 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0)) = ((𝐹𝑌) − (𝐹𝑍)))
298297fveq2d 6195 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) = (abs‘((𝐹𝑌) − (𝐹𝑍))))
299282fveq2i 6194 . . . . 5 (abs‘(1 − 0)) = (abs‘1)
300 abs1 14037 . . . . 5 (abs‘1) = 1
301299, 300eqtri 2644 . . . 4 (abs‘(1 − 0)) = 1
302301oveq2i 6661 . . 3 ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))) = ((𝑀 · (abs‘(𝑌𝑍))) · 1)
303209recnd 10068 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑀 · (abs‘(𝑌𝑍))) ∈ ℂ)
304303mulid1d 10057 . . 3 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑀 · (abs‘(𝑌𝑍))) · 1) = (𝑀 · (abs‘(𝑌𝑍))))
305302, 304syl5eq 2668 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))) = (𝑀 · (abs‘(𝑌𝑍))))
306262, 298, 3053brtr3d 4684 1 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cin 3573  wss 3574  {cpr 4179   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  cres 5116  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073  cle 10075  cmin 10266  -cneg 10267  (,)cioo 12175  [,]cicc 12178  abscabs 13974  t crest 16081  TopOpenctopn 16082  topGenctg 16098  ∞Metcxmt 19731  ballcbl 19733  fldccnfld 19746  Topctop 20698  intcnt 20821   Cn ccn 21028   ×t ctx 21363  cnccncf 22679   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvlip2  23758  dv11cn  23764
  Copyright terms: Public domain W3C validator