MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfcl Structured version   Visualization version   Unicode version

Theorem cantnfcl 8564
Description: Basic properties of the order isomorphism  G used later. The support of an  F  e.  S is a finite subset of  A, so it is well-ordered by  _E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s  |-  S  =  dom  ( A CNF  B
)
cantnfs.a  |-  ( ph  ->  A  e.  On )
cantnfs.b  |-  ( ph  ->  B  e.  On )
cantnfcl.g  |-  G  = OrdIso
(  _E  ,  ( F supp  (/) ) )
cantnfcl.f  |-  ( ph  ->  F  e.  S )
Assertion
Ref Expression
cantnfcl  |-  ( ph  ->  (  _E  We  ( F supp 
(/) )  /\  dom  G  e.  om ) )

Proof of Theorem cantnfcl
StepHypRef Expression
1 suppssdm 7308 . . . . 5  |-  ( F supp  (/) )  C_  dom  F
2 cantnfcl.f . . . . . . . 8  |-  ( ph  ->  F  e.  S )
3 cantnfs.s . . . . . . . . 9  |-  S  =  dom  ( A CNF  B
)
4 cantnfs.a . . . . . . . . 9  |-  ( ph  ->  A  e.  On )
5 cantnfs.b . . . . . . . . 9  |-  ( ph  ->  B  e.  On )
63, 4, 5cantnfs 8563 . . . . . . . 8  |-  ( ph  ->  ( F  e.  S  <->  ( F : B --> A  /\  F finSupp 
(/) ) ) )
72, 6mpbid 222 . . . . . . 7  |-  ( ph  ->  ( F : B --> A  /\  F finSupp  (/) ) )
87simpld 475 . . . . . 6  |-  ( ph  ->  F : B --> A )
9 fdm 6051 . . . . . 6  |-  ( F : B --> A  ->  dom  F  =  B )
108, 9syl 17 . . . . 5  |-  ( ph  ->  dom  F  =  B )
111, 10syl5sseq 3653 . . . 4  |-  ( ph  ->  ( F supp  (/) )  C_  B )
12 onss 6990 . . . . 5  |-  ( B  e.  On  ->  B  C_  On )
135, 12syl 17 . . . 4  |-  ( ph  ->  B  C_  On )
1411, 13sstrd 3613 . . 3  |-  ( ph  ->  ( F supp  (/) )  C_  On )
15 epweon 6983 . . 3  |-  _E  We  On
16 wess 5101 . . 3  |-  ( ( F supp  (/) )  C_  On  ->  (  _E  We  On  ->  _E  We  ( F supp  (/) ) ) )
1714, 15, 16mpisyl 21 . 2  |-  ( ph  ->  _E  We  ( F supp  (/) ) )
18 ovexd 6680 . . . . 5  |-  ( ph  ->  ( F supp  (/) )  e. 
_V )
19 cantnfcl.g . . . . . 6  |-  G  = OrdIso
(  _E  ,  ( F supp  (/) ) )
2019oion 8441 . . . . 5  |-  ( ( F supp  (/) )  e.  _V  ->  dom  G  e.  On )
2118, 20syl 17 . . . 4  |-  ( ph  ->  dom  G  e.  On )
227simprd 479 . . . . . 6  |-  ( ph  ->  F finSupp  (/) )
2322fsuppimpd 8282 . . . . 5  |-  ( ph  ->  ( F supp  (/) )  e. 
Fin )
2419oien 8443 . . . . . 6  |-  ( ( ( F supp  (/) )  e. 
_V  /\  _E  We  ( F supp  (/) ) )  ->  dom  G  ~~  ( F supp  (/) ) )
2518, 17, 24syl2anc 693 . . . . 5  |-  ( ph  ->  dom  G  ~~  ( F supp 
(/) ) )
26 enfii 8177 . . . . 5  |-  ( ( ( F supp  (/) )  e. 
Fin  /\  dom  G  ~~  ( F supp  (/) ) )  ->  dom  G  e.  Fin )
2723, 25, 26syl2anc 693 . . . 4  |-  ( ph  ->  dom  G  e.  Fin )
2821, 27elind 3798 . . 3  |-  ( ph  ->  dom  G  e.  ( On  i^i  Fin )
)
29 onfin2 8152 . . 3  |-  om  =  ( On  i^i  Fin )
3028, 29syl6eleqr 2712 . 2  |-  ( ph  ->  dom  G  e.  om )
3117, 30jca 554 1  |-  ( ph  ->  (  _E  We  ( F supp 
(/) )  /\  dom  G  e.  om ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    _E cep 5028    We wwe 5072   dom cdm 5114   Oncon0 5723   -->wf 5884  (class class class)co 6650   omcom 7065   supp csupp 7295    ~~ cen 7952   Fincfn 7955   finSupp cfsupp 8275  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cantnfval2  8566  cantnfle  8568  cantnflt  8569  cantnflt2  8570  cantnff  8571  cantnfp1lem2  8576  cantnfp1lem3  8577  cantnflem1b  8583  cantnflem1d  8585  cantnflem1  8586  cnfcomlem  8596  cnfcom  8597  cnfcom2lem  8598  cnfcom3lem  8600
  Copyright terms: Public domain W3C validator