MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgracgr Structured version   Visualization version   Unicode version

Theorem cgracgr 25710
Description: First direction of proposition 11.4 of [Schwabhauser] p. 95. Again, this is "half" of the proposition, i.e. only two additional points are used, while Schwabhauser has four. (Contributed by Thierry Arnoux, 31-Jul-2020.)
Hypotheses
Ref Expression
iscgra.p  |-  P  =  ( Base `  G
)
iscgra.i  |-  I  =  (Itv `  G )
iscgra.k  |-  K  =  (hlG `  G )
iscgra.g  |-  ( ph  ->  G  e. TarskiG )
iscgra.a  |-  ( ph  ->  A  e.  P )
iscgra.b  |-  ( ph  ->  B  e.  P )
iscgra.c  |-  ( ph  ->  C  e.  P )
iscgra.d  |-  ( ph  ->  D  e.  P )
iscgra.e  |-  ( ph  ->  E  e.  P )
iscgra.f  |-  ( ph  ->  F  e.  P )
cgrahl1.2  |-  ( ph  ->  <" A B C "> (cgrA `  G ) <" D E F "> )
cgrahl1.x  |-  ( ph  ->  X  e.  P )
cgracgr.m  |-  .-  =  ( dist `  G )
cgracgr.y  |-  ( ph  ->  Y  e.  P )
cgracgr.1  |-  ( ph  ->  X ( K `  B ) A )
cgracgr.2  |-  ( ph  ->  Y ( K `  B ) C )
cgracgr.3  |-  ( ph  ->  ( B  .-  X
)  =  ( E 
.-  D ) )
cgracgr.4  |-  ( ph  ->  ( B  .-  Y
)  =  ( E 
.-  F ) )
Assertion
Ref Expression
cgracgr  |-  ( ph  ->  ( X  .-  Y
)  =  ( D 
.-  F ) )

Proof of Theorem cgracgr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscgra.p . . 3  |-  P  =  ( Base `  G
)
2 eqid 2622 . . 3  |-  (LineG `  G )  =  (LineG `  G )
3 iscgra.i . . 3  |-  I  =  (Itv `  G )
4 iscgra.g . . . 4  |-  ( ph  ->  G  e. TarskiG )
54ad3antrrr 766 . . 3  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  G  e. TarskiG )
6 iscgra.a . . . 4  |-  ( ph  ->  A  e.  P )
76ad3antrrr 766 . . 3  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  A  e.  P
)
8 iscgra.b . . . 4  |-  ( ph  ->  B  e.  P )
98ad3antrrr 766 . . 3  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  B  e.  P
)
10 cgrahl1.x . . . 4  |-  ( ph  ->  X  e.  P )
1110ad3antrrr 766 . . 3  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  X  e.  P
)
12 eqid 2622 . . 3  |-  (cgrG `  G )  =  (cgrG `  G )
13 simpllr 799 . . 3  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  x  e.  P
)
14 iscgra.e . . . 4  |-  ( ph  ->  E  e.  P )
1514ad3antrrr 766 . . 3  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  E  e.  P
)
16 cgracgr.m . . 3  |-  .-  =  ( dist `  G )
17 cgracgr.y . . . 4  |-  ( ph  ->  Y  e.  P )
1817ad3antrrr 766 . . 3  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  Y  e.  P
)
19 iscgra.d . . . 4  |-  ( ph  ->  D  e.  P )
2019ad3antrrr 766 . . 3  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  D  e.  P
)
21 iscgra.f . . . 4  |-  ( ph  ->  F  e.  P )
2221ad3antrrr 766 . . 3  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  F  e.  P
)
23 iscgra.k . . . . . . . . 9  |-  K  =  (hlG `  G )
24 iscgra.c . . . . . . . . 9  |-  ( ph  ->  C  e.  P )
25 cgrahl1.2 . . . . . . . . 9  |-  ( ph  ->  <" A B C "> (cgrA `  G ) <" D E F "> )
261, 3, 23, 4, 6, 8, 24, 19, 14, 21, 25cgrane1 25704 . . . . . . . 8  |-  ( ph  ->  A  =/=  B )
2726necomd 2849 . . . . . . 7  |-  ( ph  ->  B  =/=  A )
28 cgracgr.1 . . . . . . . 8  |-  ( ph  ->  X ( K `  B ) A )
291, 3, 23, 10, 6, 8, 4, 2, 28hlln 25502 . . . . . . 7  |-  ( ph  ->  X  e.  ( A (LineG `  G ) B ) )
301, 3, 2, 4, 8, 6, 10, 27, 29lncom 25517 . . . . . 6  |-  ( ph  ->  X  e.  ( B (LineG `  G ) A ) )
3130orcd 407 . . . . 5  |-  ( ph  ->  ( X  e.  ( B (LineG `  G
) A )  \/  B  =  A ) )
321, 2, 3, 4, 8, 6, 10, 31colrot1 25454 . . . 4  |-  ( ph  ->  ( B  e.  ( A (LineG `  G
) X )  \/  A  =  X ) )
3332ad3antrrr 766 . . 3  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( B  e.  ( A (LineG `  G ) X )  \/  A  =  X ) )
3424ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  C  e.  P
)
35 simplr 792 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  y  e.  P
)
36 simpr1 1067 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  <" A B C "> (cgrG `  G ) <" x E y "> )
371, 16, 3, 12, 5, 7, 9, 34, 13, 15, 35, 36cgr3simp1 25415 . . . 4  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( A  .-  B )  =  ( x  .-  E ) )
38 cgracgr.3 . . . . 5  |-  ( ph  ->  ( B  .-  X
)  =  ( E 
.-  D ) )
3938ad3antrrr 766 . . . 4  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( B  .-  X )  =  ( E  .-  D ) )
40 eqid 2622 . . . . . . 7  |-  (≤G `  G )  =  (≤G `  G )
41 simpr2 1068 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  x ( K `
 E ) D )
421, 3, 23, 13, 20, 15, 5ishlg 25497 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( x ( K `  E ) D  <->  ( x  =/= 
E  /\  D  =/=  E  /\  ( x  e.  ( E I D )  \/  D  e.  ( E I x ) ) ) ) )
4341, 42mpbid 222 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( x  =/= 
E  /\  D  =/=  E  /\  ( x  e.  ( E I D )  \/  D  e.  ( E I x ) ) ) )
4443simp3d 1075 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( x  e.  ( E I D )  \/  D  e.  ( E I x ) ) )
451, 3, 23, 10, 6, 8, 4ishlg 25497 . . . . . . . . . . 11  |-  ( ph  ->  ( X ( K `
 B ) A  <-> 
( X  =/=  B  /\  A  =/=  B  /\  ( X  e.  ( B I A )  \/  A  e.  ( B I X ) ) ) ) )
4628, 45mpbid 222 . . . . . . . . . 10  |-  ( ph  ->  ( X  =/=  B  /\  A  =/=  B  /\  ( X  e.  ( B I A )  \/  A  e.  ( B I X ) ) ) )
4746simp3d 1075 . . . . . . . . 9  |-  ( ph  ->  ( X  e.  ( B I A )  \/  A  e.  ( B I X ) ) )
4847orcomd 403 . . . . . . . 8  |-  ( ph  ->  ( A  e.  ( B I X )  \/  X  e.  ( B I A ) ) )
4948ad3antrrr 766 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( A  e.  ( B I X )  \/  X  e.  ( B I A ) ) )
5037eqcomd 2628 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( x  .-  E )  =  ( A  .-  B ) )
511, 16, 3, 5, 13, 15, 7, 9, 50tgcgrcomlr 25375 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( E  .-  x )  =  ( B  .-  A ) )
5239eqcomd 2628 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( E  .-  D )  =  ( B  .-  X ) )
531, 16, 3, 40, 5, 15, 13, 20, 9, 9, 7, 11, 44, 49, 51, 52tgcgrsub2 25490 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( x  .-  D )  =  ( A  .-  X ) )
5453eqcomd 2628 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( A  .-  X )  =  ( x  .-  D ) )
551, 16, 3, 5, 7, 11, 13, 20, 54tgcgrcomlr 25375 . . . 4  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( X  .-  A )  =  ( D  .-  x ) )
561, 16, 12, 5, 7, 9, 11, 13, 15, 20, 37, 39, 55trgcgr 25411 . . 3  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  <" A B X "> (cgrG `  G ) <" x E D "> )
57 cgracgr.2 . . . . . . . . 9  |-  ( ph  ->  Y ( K `  B ) C )
581, 3, 23, 17, 24, 8, 4, 2, 57hlln 25502 . . . . . . . 8  |-  ( ph  ->  Y  e.  ( C (LineG `  G ) B ) )
5958orcd 407 . . . . . . 7  |-  ( ph  ->  ( Y  e.  ( C (LineG `  G
) B )  \/  C  =  B ) )
601, 2, 3, 4, 24, 8, 17, 59colrot1 25454 . . . . . 6  |-  ( ph  ->  ( C  e.  ( B (LineG `  G
) Y )  \/  B  =  Y ) )
6160ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( C  e.  ( B (LineG `  G ) Y )  \/  B  =  Y ) )
621, 16, 3, 12, 5, 7, 9, 34, 13, 15, 35, 36cgr3simp2 25416 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( B  .-  C )  =  ( E  .-  y ) )
631, 3, 23, 17, 24, 8, 4ishlg 25497 . . . . . . . . . . 11  |-  ( ph  ->  ( Y ( K `
 B ) C  <-> 
( Y  =/=  B  /\  C  =/=  B  /\  ( Y  e.  ( B I C )  \/  C  e.  ( B I Y ) ) ) ) )
6457, 63mpbid 222 . . . . . . . . . 10  |-  ( ph  ->  ( Y  =/=  B  /\  C  =/=  B  /\  ( Y  e.  ( B I C )  \/  C  e.  ( B I Y ) ) ) )
6564simp3d 1075 . . . . . . . . 9  |-  ( ph  ->  ( Y  e.  ( B I C )  \/  C  e.  ( B I Y ) ) )
6665orcomd 403 . . . . . . . 8  |-  ( ph  ->  ( C  e.  ( B I Y )  \/  Y  e.  ( B I C ) ) )
6766ad3antrrr 766 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( C  e.  ( B I Y )  \/  Y  e.  ( B I C ) ) )
68 simpr3 1069 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  y ( K `
 E ) F )
691, 3, 23, 35, 22, 15, 5ishlg 25497 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( y ( K `  E ) F  <->  ( y  =/= 
E  /\  F  =/=  E  /\  ( y  e.  ( E I F )  \/  F  e.  ( E I y ) ) ) ) )
7068, 69mpbid 222 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( y  =/= 
E  /\  F  =/=  E  /\  ( y  e.  ( E I F )  \/  F  e.  ( E I y ) ) ) )
7170simp3d 1075 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( y  e.  ( E I F )  \/  F  e.  ( E I y ) ) )
72 cgracgr.4 . . . . . . . 8  |-  ( ph  ->  ( B  .-  Y
)  =  ( E 
.-  F ) )
7372ad3antrrr 766 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( B  .-  Y )  =  ( E  .-  F ) )
741, 16, 3, 40, 5, 9, 34, 18, 15, 15, 35, 22, 67, 71, 62, 73tgcgrsub2 25490 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( C  .-  Y )  =  ( y  .-  F ) )
751, 16, 3, 5, 9, 18, 15, 22, 73tgcgrcomlr 25375 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( Y  .-  B )  =  ( F  .-  E ) )
761, 16, 12, 5, 9, 34, 18, 15, 35, 22, 62, 74, 75trgcgr 25411 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  <" B C Y "> (cgrG `  G ) <" E
y F "> )
7751eqcomd 2628 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( B  .-  A )  =  ( E  .-  x ) )
781, 16, 3, 12, 5, 7, 9, 34, 13, 15, 35, 36cgr3simp3 25417 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( C  .-  A )  =  ( y  .-  x ) )
791, 3, 23, 4, 6, 8, 24, 19, 14, 21, 25cgrane2 25705 . . . . . 6  |-  ( ph  ->  B  =/=  C )
8079ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  B  =/=  C
)
811, 2, 3, 5, 9, 34, 18, 12, 15, 35, 16, 7, 22, 13, 61, 76, 77, 78, 80tgfscgr 25463 . . . 4  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( Y  .-  A )  =  ( F  .-  x ) )
821, 16, 3, 5, 18, 7, 22, 13, 81tgcgrcomlr 25375 . . 3  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( A  .-  Y )  =  ( x  .-  F ) )
8326ad3antrrr 766 . . 3  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  A  =/=  B
)
841, 2, 3, 5, 7, 9, 11, 12, 13, 15, 16, 18, 20, 22, 33, 56, 82, 73, 83tgfscgr 25463 . 2  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) )  ->  ( X  .-  Y )  =  ( D  .-  F ) )
851, 3, 23, 4, 6, 8, 24, 19, 14, 21iscgra 25701 . . 3  |-  ( ph  ->  ( <" A B C "> (cgrA `  G ) <" D E F ">  <->  E. x  e.  P  E. y  e.  P  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x
( K `  E
) D  /\  y
( K `  E
) F ) ) )
8625, 85mpbid 222 . 2  |-  ( ph  ->  E. x  e.  P  E. y  e.  P  ( <" A B C "> (cgrG `  G ) <" x E y ">  /\  x ( K `  E ) D  /\  y ( K `  E ) F ) )
8784, 86r19.29vva 3081 1  |-  ( ph  ->  ( X  .-  Y
)  =  ( D 
.-  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405  ≤Gcleg 25477  hlGchlg 25495  cgrAccgra 25699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-hlg 25496  df-cgra 25700
This theorem is referenced by:  cgracom  25714  cgratr  25715  dfcgra2  25721  tgsas1  25735  tgasa1  25739
  Copyright terms: Public domain W3C validator