Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climleltrp Structured version   Visualization version   GIF version

Theorem climleltrp 39908
Description: The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climleltrp.k 𝑘𝜑
climleltrp.f 𝑘𝐹
climleltrp.z 𝑍 = (ℤ𝑀)
climleltrp.n (𝜑𝑁𝑍)
climleltrp.r ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
climleltrp.a (𝜑𝐹𝐴)
climleltrp.c (𝜑𝐶 ∈ ℝ)
climleltrp.l (𝜑𝐴𝐶)
climleltrp.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
climleltrp (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹   𝑗,𝑁,𝑘   𝑗,𝑋,𝑘   𝑗,𝑍   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem climleltrp
StepHypRef Expression
1 climleltrp.n . . . . 5 (𝜑𝑁𝑍)
2 climleltrp.z . . . . 5 𝑍 = (ℤ𝑀)
31, 2syl6eleq 2711 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
4 uzss 11708 . . . 4 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
53, 4syl 17 . . 3 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
65, 2syl6sseqr 3652 . 2 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
7 climleltrp.k . . . 4 𝑘𝜑
8 climleltrp.f . . . 4 𝑘𝐹
9 uzssz 11707 . . . . 5 (ℤ𝑀) ⊆ ℤ
109, 3sseldi 3601 . . . 4 (𝜑𝑁 ∈ ℤ)
11 eqid 2622 . . . 4 (ℤ𝑁) = (ℤ𝑁)
12 climleltrp.a . . . 4 (𝜑𝐹𝐴)
13 eqidd 2623 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) = (𝐹𝑘))
14 climleltrp.x . . . 4 (𝜑𝑋 ∈ ℝ+)
157, 8, 10, 11, 12, 13, 14clim2d 39905 . . 3 (𝜑 → ∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
16 nfv 1843 . . . . . 6 𝑘 𝑗 ∈ (ℤ𝑁)
177, 16nfan 1828 . . . . 5 𝑘(𝜑𝑗 ∈ (ℤ𝑁))
18 simplll 798 . . . . . . . 8 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝜑)
19 uzss 11708 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑁) → (ℤ𝑗) ⊆ (ℤ𝑁))
2019ad2antlr 763 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → (ℤ𝑗) ⊆ (ℤ𝑁))
21 simpr 477 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
2220, 21sseldd 3604 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑁))
2322adantr 481 . . . . . . . 8 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝑘 ∈ (ℤ𝑁))
24 simpr 477 . . . . . . . 8 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
25 climleltrp.r . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
2613, 25eqeltrd 2701 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
2726adantr 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) ∈ ℝ)
28 climcl 14230 . . . . . . . . . . . . . . 15 (𝐹𝐴𝐴 ∈ ℂ)
2912, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
3029adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐴 ∈ ℂ)
3126recnd 10068 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℂ)
3230, 31pncan3d 10395 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐴 + ((𝐹𝑘) − 𝐴)) = (𝐹𝑘))
3332eqcomd 2628 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) = (𝐴 + ((𝐹𝑘) − 𝐴)))
3433adantr 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) = (𝐴 + ((𝐹𝑘) − 𝐴)))
3534, 27eqeltrrd 2702 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹𝑘) − 𝐴)) ∈ ℝ)
36 climleltrp.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
3736ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐶 ∈ ℝ)
387, 8, 11, 10, 12, 25climreclf 39896 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
3938ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐴 ∈ ℝ)
4027, 39resubcld 10458 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
4137, 40readdcld 10069 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐶 + ((𝐹𝑘) − 𝐴)) ∈ ℝ)
4214rpred 11872 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ)
4342ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝑋 ∈ ℝ)
4437, 43readdcld 10069 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐶 + 𝑋) ∈ ℝ)
45 climleltrp.l . . . . . . . . . . . . 13 (𝜑𝐴𝐶)
4645ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐴𝐶)
4739, 37, 40, 46leadd1dd 10641 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹𝑘) − 𝐴)) ≤ (𝐶 + ((𝐹𝑘) − 𝐴)))
4831adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) ∈ ℂ)
4930adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐴 ∈ ℂ)
5048, 49subcld 10392 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
5150abscld 14175 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
5240leabsd 14153 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) ≤ (abs‘((𝐹𝑘) − 𝐴)))
53 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
5440, 51, 43, 52, 53lelttrd 10195 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) < 𝑋)
5540, 43, 37, 54ltadd2dd 10196 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐶 + ((𝐹𝑘) − 𝐴)) < (𝐶 + 𝑋))
5635, 41, 44, 47, 55lelttrd 10195 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹𝑘) − 𝐴)) < (𝐶 + 𝑋))
5734, 56eqbrtrd 4675 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) < (𝐶 + 𝑋))
5827, 57jca 554 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
5918, 23, 24, 58syl21anc 1325 . . . . . . 7 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
6059adantrl 752 . . . . . 6 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
6160ex 450 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
6217, 61ralimdaa 2958 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑁)) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
6362reximdva 3017 . . 3 (𝜑 → (∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
6415, 63mpd 15 . 2 (𝜑 → ∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
65 ssrexv 3667 . 2 ((ℤ𝑁) ⊆ 𝑍 → (∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
666, 64, 65sylc 65 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wnf 1708  wcel 1990  wnfc 2751  wral 2912  wrex 2913  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935   + caddc 9939   < clt 10074  cle 10075  cmin 10266  cz 11377  cuz 11687  +crp 11832  abscabs 13974  cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220
This theorem is referenced by:  smflimlem2  40980
  Copyright terms: Public domain W3C validator