MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzf1o Structured version   Visualization version   GIF version

Theorem gsumzf1o 18313
Description: Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 2-Jun-2019.)
Hypotheses
Ref Expression
gsumzcl.b 𝐵 = (Base‘𝐺)
gsumzcl.0 0 = (0g𝐺)
gsumzcl.z 𝑍 = (Cntz‘𝐺)
gsumzcl.g (𝜑𝐺 ∈ Mnd)
gsumzcl.a (𝜑𝐴𝑉)
gsumzcl.f (𝜑𝐹:𝐴𝐵)
gsumzcl.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzcl.w (𝜑𝐹 finSupp 0 )
gsumzf1o.h (𝜑𝐻:𝐶1-1-onto𝐴)
Assertion
Ref Expression
gsumzf1o (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻)))

Proof of Theorem gsumzf1o
Dummy variables 𝑓 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzcl.g . . . . . . 7 (𝜑𝐺 ∈ Mnd)
2 gsumzcl.a . . . . . . 7 (𝜑𝐴𝑉)
3 gsumzcl.0 . . . . . . . 8 0 = (0g𝐺)
43gsumz 17374 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
51, 2, 4syl2anc 693 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘𝐴0 )) = 0 )
6 gsumzf1o.h . . . . . . . . 9 (𝜑𝐻:𝐶1-1-onto𝐴)
7 f1of1 6136 . . . . . . . . 9 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶1-1𝐴)
86, 7syl 17 . . . . . . . 8 (𝜑𝐻:𝐶1-1𝐴)
9 f1dmex 7136 . . . . . . . 8 ((𝐻:𝐶1-1𝐴𝐴𝑉) → 𝐶 ∈ V)
108, 2, 9syl2anc 693 . . . . . . 7 (𝜑𝐶 ∈ V)
113gsumz 17374 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐶 ∈ V) → (𝐺 Σg (𝑥𝐶0 )) = 0 )
121, 10, 11syl2anc 693 . . . . . 6 (𝜑 → (𝐺 Σg (𝑥𝐶0 )) = 0 )
135, 12eqtr4d 2659 . . . . 5 (𝜑 → (𝐺 Σg (𝑘𝐴0 )) = (𝐺 Σg (𝑥𝐶0 )))
1413adantr 481 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝑘𝐴0 )) = (𝐺 Σg (𝑥𝐶0 )))
15 gsumzcl.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
16 fvex 6201 . . . . . . . 8 (0g𝐺) ∈ V
173, 16eqeltri 2697 . . . . . . 7 0 ∈ V
1817a1i 11 . . . . . 6 (𝜑0 ∈ V)
19 ssid 3624 . . . . . . 7 (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )
2019a1i 11 . . . . . 6 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
2115, 2, 18, 20gsumcllem 18309 . . . . 5 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐹 = (𝑘𝐴0 ))
2221oveq2d 6666 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑘𝐴0 )))
23 f1of 6137 . . . . . . . . 9 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶𝐴)
246, 23syl 17 . . . . . . . 8 (𝜑𝐻:𝐶𝐴)
2524adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐻:𝐶𝐴)
2625ffvelrnda 6359 . . . . . 6 (((𝜑 ∧ (𝐹 supp 0 ) = ∅) ∧ 𝑥𝐶) → (𝐻𝑥) ∈ 𝐴)
2725feqmptd 6249 . . . . . 6 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐻 = (𝑥𝐶 ↦ (𝐻𝑥)))
28 eqidd 2623 . . . . . 6 (𝑘 = (𝐻𝑥) → 0 = 0 )
2926, 27, 21, 28fmptco 6396 . . . . 5 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹𝐻) = (𝑥𝐶0 ))
3029oveq2d 6666 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝐹𝐻)) = (𝐺 Σg (𝑥𝐶0 )))
3114, 22, 303eqtr4d 2666 . . 3 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻)))
3231ex 450 . 2 (𝜑 → ((𝐹 supp 0 ) = ∅ → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻))))
33 coass 5654 . . . . . . . . . . 11 ((𝐻𝐻) ∘ 𝑓) = (𝐻 ∘ (𝐻𝑓))
346adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐻:𝐶1-1-onto𝐴)
35 f1ococnv2 6163 . . . . . . . . . . . . . 14 (𝐻:𝐶1-1-onto𝐴 → (𝐻𝐻) = ( I ↾ 𝐴))
3634, 35syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐻𝐻) = ( I ↾ 𝐴))
3736coeq1d 5283 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐻𝐻) ∘ 𝑓) = (( I ↾ 𝐴) ∘ 𝑓))
38 f1of1 6136 . . . . . . . . . . . . . . 15 (𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ))
3938ad2antll 765 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ))
40 suppssdm 7308 . . . . . . . . . . . . . . . 16 (𝐹 supp 0 ) ⊆ dom 𝐹
41 fdm 6051 . . . . . . . . . . . . . . . . 17 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
4215, 41syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐹 = 𝐴)
4340, 42syl5sseq 3653 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
4443adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ 𝐴)
45 f1ss 6106 . . . . . . . . . . . . . 14 ((𝑓:(1...(#‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) ⊆ 𝐴) → 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1𝐴)
4639, 44, 45syl2anc 693 . . . . . . . . . . . . 13 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1𝐴)
47 f1f 6101 . . . . . . . . . . . . 13 (𝑓:(1...(#‘(𝐹 supp 0 )))–1-1𝐴𝑓:(1...(#‘(𝐹 supp 0 )))⟶𝐴)
48 fcoi2 6079 . . . . . . . . . . . . 13 (𝑓:(1...(#‘(𝐹 supp 0 )))⟶𝐴 → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓)
4946, 47, 483syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓)
5037, 49eqtrd 2656 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐻𝐻) ∘ 𝑓) = 𝑓)
5133, 50syl5reqr 2671 . . . . . . . . . 10 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓 = (𝐻 ∘ (𝐻𝑓)))
5251coeq2d 5284 . . . . . . . . 9 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹𝑓) = (𝐹 ∘ (𝐻 ∘ (𝐻𝑓))))
53 coass 5654 . . . . . . . . 9 ((𝐹𝐻) ∘ (𝐻𝑓)) = (𝐹 ∘ (𝐻 ∘ (𝐻𝑓)))
5452, 53syl6eqr 2674 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹𝑓) = ((𝐹𝐻) ∘ (𝐻𝑓)))
5554seqeq3d 12809 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → seq1((+g𝐺), (𝐹𝑓)) = seq1((+g𝐺), ((𝐹𝐻) ∘ (𝐻𝑓))))
5655fveq1d 6193 . . . . . 6 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘(𝐹 supp 0 ))) = (seq1((+g𝐺), ((𝐹𝐻) ∘ (𝐻𝑓)))‘(#‘(𝐹 supp 0 ))))
57 gsumzcl.b . . . . . . 7 𝐵 = (Base‘𝐺)
58 eqid 2622 . . . . . . 7 (+g𝐺) = (+g𝐺)
59 gsumzcl.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
601adantr 481 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐺 ∈ Mnd)
612adantr 481 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐴𝑉)
6215adantr 481 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐹:𝐴𝐵)
63 gsumzcl.c . . . . . . . 8 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
6463adantr 481 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
65 simprl 794 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (#‘(𝐹 supp 0 )) ∈ ℕ)
66 f1ofo 6144 . . . . . . . . . 10 (𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(#‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ))
67 forn 6118 . . . . . . . . . 10 (𝑓:(1...(#‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 ))
6866, 67syl 17 . . . . . . . . 9 (𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 ))
6968ad2antll 765 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝑓 = (𝐹 supp 0 ))
7019, 69syl5sseqr 3654 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
71 eqid 2622 . . . . . . 7 ((𝐹𝑓) supp 0 ) = ((𝐹𝑓) supp 0 )
7257, 3, 58, 59, 60, 61, 62, 64, 65, 46, 70, 71gsumval3 18308 . . . . . 6 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), (𝐹𝑓))‘(#‘(𝐹 supp 0 ))))
7310adantr 481 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐶 ∈ V)
74 fco 6058 . . . . . . . . 9 ((𝐹:𝐴𝐵𝐻:𝐶𝐴) → (𝐹𝐻):𝐶𝐵)
7515, 24, 74syl2anc 693 . . . . . . . 8 (𝜑 → (𝐹𝐻):𝐶𝐵)
7675adantr 481 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹𝐻):𝐶𝐵)
77 rncoss 5386 . . . . . . . . 9 ran (𝐹𝐻) ⊆ ran 𝐹
7859cntzidss 17770 . . . . . . . . 9 ((ran 𝐹 ⊆ (𝑍‘ran 𝐹) ∧ ran (𝐹𝐻) ⊆ ran 𝐹) → ran (𝐹𝐻) ⊆ (𝑍‘ran (𝐹𝐻)))
7963, 77, 78sylancl 694 . . . . . . . 8 (𝜑 → ran (𝐹𝐻) ⊆ (𝑍‘ran (𝐹𝐻)))
8079adantr 481 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran (𝐹𝐻) ⊆ (𝑍‘ran (𝐹𝐻)))
81 f1ocnv 6149 . . . . . . . . . 10 (𝐻:𝐶1-1-onto𝐴𝐻:𝐴1-1-onto𝐶)
82 f1of1 6136 . . . . . . . . . 10 (𝐻:𝐴1-1-onto𝐶𝐻:𝐴1-1𝐶)
836, 81, 823syl 18 . . . . . . . . 9 (𝜑𝐻:𝐴1-1𝐶)
8483adantr 481 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐻:𝐴1-1𝐶)
85 f1co 6110 . . . . . . . 8 ((𝐻:𝐴1-1𝐶𝑓:(1...(#‘(𝐹 supp 0 )))–1-1𝐴) → (𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1𝐶)
8684, 46, 85syl2anc 693 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1𝐶)
8719a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
88 fex 6490 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
8915, 2, 88syl2anc 693 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ V)
90 suppimacnv 7306 . . . . . . . . . . . . . 14 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
9189, 17, 90sylancl 694 . . . . . . . . . . . . 13 (𝜑 → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
9291eqcomd 2628 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ (V ∖ { 0 })) = (𝐹 supp 0 ))
9392adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 “ (V ∖ { 0 })) = (𝐹 supp 0 ))
9487, 93, 693sstr4d 3648 . . . . . . . . . 10 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 “ (V ∖ { 0 })) ⊆ ran 𝑓)
95 imass2 5501 . . . . . . . . . 10 ((𝐹 “ (V ∖ { 0 })) ⊆ ran 𝑓 → (𝐻 “ (𝐹 “ (V ∖ { 0 }))) ⊆ (𝐻 “ ran 𝑓))
9694, 95syl 17 . . . . . . . . 9 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐻 “ (𝐹 “ (V ∖ { 0 }))) ⊆ (𝐻 “ ran 𝑓))
97 cnvco 5308 . . . . . . . . . . 11 (𝐹𝐻) = (𝐻𝐹)
9897imaeq1i 5463 . . . . . . . . . 10 ((𝐹𝐻) “ (V ∖ { 0 })) = ((𝐻𝐹) “ (V ∖ { 0 }))
99 imaco 5640 . . . . . . . . . 10 ((𝐻𝐹) “ (V ∖ { 0 })) = (𝐻 “ (𝐹 “ (V ∖ { 0 })))
10098, 99eqtri 2644 . . . . . . . . 9 ((𝐹𝐻) “ (V ∖ { 0 })) = (𝐻 “ (𝐹 “ (V ∖ { 0 })))
101 rnco2 5642 . . . . . . . . 9 ran (𝐻𝑓) = (𝐻 “ ran 𝑓)
10296, 100, 1013sstr4g 3646 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐹𝐻) “ (V ∖ { 0 })) ⊆ ran (𝐻𝑓))
103 f1oexrnex 7115 . . . . . . . . . . . . 13 ((𝐻:𝐶1-1-onto𝐴𝐴𝑉) → 𝐻 ∈ V)
1046, 2, 103syl2anc 693 . . . . . . . . . . . 12 (𝜑𝐻 ∈ V)
105 coexg 7117 . . . . . . . . . . . 12 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → (𝐹𝐻) ∈ V)
10689, 104, 105syl2anc 693 . . . . . . . . . . 11 (𝜑 → (𝐹𝐻) ∈ V)
107 suppimacnv 7306 . . . . . . . . . . 11 (((𝐹𝐻) ∈ V ∧ 0 ∈ V) → ((𝐹𝐻) supp 0 ) = ((𝐹𝐻) “ (V ∖ { 0 })))
108106, 17, 107sylancl 694 . . . . . . . . . 10 (𝜑 → ((𝐹𝐻) supp 0 ) = ((𝐹𝐻) “ (V ∖ { 0 })))
109108sseq1d 3632 . . . . . . . . 9 (𝜑 → (((𝐹𝐻) supp 0 ) ⊆ ran (𝐻𝑓) ↔ ((𝐹𝐻) “ (V ∖ { 0 })) ⊆ ran (𝐻𝑓)))
110109adantr 481 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (((𝐹𝐻) supp 0 ) ⊆ ran (𝐻𝑓) ↔ ((𝐹𝐻) “ (V ∖ { 0 })) ⊆ ran (𝐻𝑓)))
111102, 110mpbird 247 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐹𝐻) supp 0 ) ⊆ ran (𝐻𝑓))
112 eqid 2622 . . . . . . 7 (((𝐹𝐻) ∘ (𝐻𝑓)) supp 0 ) = (((𝐹𝐻) ∘ (𝐻𝑓)) supp 0 )
11357, 3, 58, 59, 60, 73, 76, 80, 65, 86, 111, 112gsumval3 18308 . . . . . 6 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg (𝐹𝐻)) = (seq1((+g𝐺), ((𝐹𝐻) ∘ (𝐻𝑓)))‘(#‘(𝐹 supp 0 ))))
11456, 72, 1133eqtr4d 2666 . . . . 5 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻)))
115114expr 643 . . . 4 ((𝜑 ∧ (#‘(𝐹 supp 0 )) ∈ ℕ) → (𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻))))
116115exlimdv 1861 . . 3 ((𝜑 ∧ (#‘(𝐹 supp 0 )) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻))))
117116expimpd 629 . 2 (𝜑 → (((#‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻))))
118 gsumzcl.w . . 3 (𝜑𝐹 finSupp 0 )
119 fsuppimp 8281 . . . 4 (𝐹 finSupp 0 → (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin))
120119simprd 479 . . 3 (𝐹 finSupp 0 → (𝐹 supp 0 ) ∈ Fin)
121 fz1f1o 14441 . . 3 ((𝐹 supp 0 ) ∈ Fin → ((𝐹 supp 0 ) = ∅ ∨ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))))
122118, 120, 1213syl 18 . 2 (𝜑 → ((𝐹 supp 0 ) = ∅ ∨ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))))
12332, 117, 122mpjaod 396 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  cdif 3571  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  cmpt 4729   I cid 5023  ccnv 5113  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  ccom 5118  Fun wfun 5882  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650   supp csupp 7295  Fincfn 7955   finSupp cfsupp 8275  1c1 9937  cn 11020  ...cfz 12326  seqcseq 12801  #chash 13117  Basecbs 15857  +gcplusg 15941  0gc0g 16100   Σg cgsu 16101  Mndcmnd 17294  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cntz 17750
This theorem is referenced by:  gsumf1o  18317  smadiadetlem3  20474
  Copyright terms: Public domain W3C validator