| Step | Hyp | Ref
| Expression |
| 1 | | coemulhi.3 |
. . . . 5
⊢ 𝑀 = (deg‘𝐹) |
| 2 | | dgrcl 23989 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
| 3 | 1, 2 | syl5eqel 2705 |
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈
ℕ0) |
| 4 | | coemulhi.4 |
. . . . 5
⊢ 𝑁 = (deg‘𝐺) |
| 5 | | dgrcl 23989 |
. . . . 5
⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈
ℕ0) |
| 6 | 4, 5 | syl5eqel 2705 |
. . . 4
⊢ (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈
ℕ0) |
| 7 | | nn0addcl 11328 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 + 𝑁) ∈
ℕ0) |
| 8 | 3, 6, 7 | syl2an 494 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 + 𝑁) ∈
ℕ0) |
| 9 | | coefv0.1 |
. . . 4
⊢ 𝐴 = (coeff‘𝐹) |
| 10 | | coeadd.2 |
. . . 4
⊢ 𝐵 = (coeff‘𝐺) |
| 11 | 9, 10 | coemul 24008 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ (𝑀 + 𝑁) ∈ ℕ0) →
((coeff‘(𝐹
∘𝑓 · 𝐺))‘(𝑀 + 𝑁)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴‘𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘)))) |
| 12 | 8, 11 | mpd3an3 1425 |
. 2
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘𝑓 · 𝐺))‘(𝑀 + 𝑁)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴‘𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘)))) |
| 13 | 6 | adantl 482 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈
ℕ0) |
| 14 | 13 | nn0ge0d 11354 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 0 ≤ 𝑁) |
| 15 | 3 | adantr 481 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈
ℕ0) |
| 16 | 15 | nn0red 11352 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℝ) |
| 17 | 13 | nn0red 11352 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℝ) |
| 18 | 16, 17 | addge01d 10615 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (0 ≤ 𝑁 ↔ 𝑀 ≤ (𝑀 + 𝑁))) |
| 19 | 14, 18 | mpbid 222 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ≤ (𝑀 + 𝑁)) |
| 20 | | nn0uz 11722 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
| 21 | 15, 20 | syl6eleq 2711 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈
(ℤ≥‘0)) |
| 22 | 8 | nn0zd 11480 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 + 𝑁) ∈ ℤ) |
| 23 | | elfz5 12334 |
. . . . . 6
⊢ ((𝑀 ∈
(ℤ≥‘0) ∧ (𝑀 + 𝑁) ∈ ℤ) → (𝑀 ∈ (0...(𝑀 + 𝑁)) ↔ 𝑀 ≤ (𝑀 + 𝑁))) |
| 24 | 21, 22, 23 | syl2anc 693 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 ∈ (0...(𝑀 + 𝑁)) ↔ 𝑀 ≤ (𝑀 + 𝑁))) |
| 25 | 19, 24 | mpbird 247 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ (0...(𝑀 + 𝑁))) |
| 26 | 25 | snssd 4340 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → {𝑀} ⊆ (0...(𝑀 + 𝑁))) |
| 27 | | elsni 4194 |
. . . . . 6
⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) |
| 28 | 27 | adantl 482 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → 𝑘 = 𝑀) |
| 29 | | fveq2 6191 |
. . . . . 6
⊢ (𝑘 = 𝑀 → (𝐴‘𝑘) = (𝐴‘𝑀)) |
| 30 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑘 = 𝑀 → ((𝑀 + 𝑁) − 𝑘) = ((𝑀 + 𝑁) − 𝑀)) |
| 31 | 30 | fveq2d 6195 |
. . . . . 6
⊢ (𝑘 = 𝑀 → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = (𝐵‘((𝑀 + 𝑁) − 𝑀))) |
| 32 | 29, 31 | oveq12d 6668 |
. . . . 5
⊢ (𝑘 = 𝑀 → ((𝐴‘𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴‘𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀)))) |
| 33 | 28, 32 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → ((𝐴‘𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴‘𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀)))) |
| 34 | 16 | recnd 10068 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℂ) |
| 35 | 17 | recnd 10068 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℂ) |
| 36 | 34, 35 | pncan2d 10394 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝑀 + 𝑁) − 𝑀) = 𝑁) |
| 37 | 36 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵‘((𝑀 + 𝑁) − 𝑀)) = (𝐵‘𝑁)) |
| 38 | 37 | oveq2d 6666 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴‘𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) = ((𝐴‘𝑀) · (𝐵‘𝑁))) |
| 39 | 9 | coef3 23988 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
| 40 | 39 | adantr 481 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴:ℕ0⟶ℂ) |
| 41 | 40, 15 | ffvelrnd 6360 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴‘𝑀) ∈ ℂ) |
| 42 | 10 | coef3 23988 |
. . . . . . . . 9
⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ) |
| 43 | 42 | adantl 482 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵:ℕ0⟶ℂ) |
| 44 | 43, 13 | ffvelrnd 6360 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵‘𝑁) ∈ ℂ) |
| 45 | 41, 44 | mulcld 10060 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴‘𝑀) · (𝐵‘𝑁)) ∈ ℂ) |
| 46 | 38, 45 | eqeltrd 2701 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴‘𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) ∈ ℂ) |
| 47 | 46 | adantr 481 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → ((𝐴‘𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) ∈ ℂ) |
| 48 | 33, 47 | eqeltrd 2701 |
. . 3
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → ((𝐴‘𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) ∈ ℂ) |
| 49 | | simpl 473 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆)) |
| 50 | | eldifi 3732 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → 𝑘 ∈ (0...(𝑀 + 𝑁))) |
| 51 | | elfznn0 12433 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...(𝑀 + 𝑁)) → 𝑘 ∈ ℕ0) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → 𝑘 ∈ ℕ0) |
| 53 | 9, 1 | dgrub 23990 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴‘𝑘) ≠ 0) → 𝑘 ≤ 𝑀) |
| 54 | 53 | 3expia 1267 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑀)) |
| 55 | 49, 52, 54 | syl2an 494 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑀)) |
| 56 | 55 | necon1bd 2812 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ 𝑘 ≤ 𝑀 → (𝐴‘𝑘) = 0)) |
| 57 | 56 | imp 445 |
. . . . . 6
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘 ≤ 𝑀) → (𝐴‘𝑘) = 0) |
| 58 | 57 | oveq1d 6665 |
. . . . 5
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘 ≤ 𝑀) → ((𝐴‘𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = (0 · (𝐵‘((𝑀 + 𝑁) − 𝑘)))) |
| 59 | 43 | ad2antrr 762 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘 ≤ 𝑀) → 𝐵:ℕ0⟶ℂ) |
| 60 | 50 | ad2antlr 763 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘 ≤ 𝑀) → 𝑘 ∈ (0...(𝑀 + 𝑁))) |
| 61 | | fznn0sub 12373 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...(𝑀 + 𝑁)) → ((𝑀 + 𝑁) − 𝑘) ∈
ℕ0) |
| 62 | 60, 61 | syl 17 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘 ≤ 𝑀) → ((𝑀 + 𝑁) − 𝑘) ∈
ℕ0) |
| 63 | 59, 62 | ffvelrnd 6360 |
. . . . . 6
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘 ≤ 𝑀) → (𝐵‘((𝑀 + 𝑁) − 𝑘)) ∈ ℂ) |
| 64 | 63 | mul02d 10234 |
. . . . 5
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘 ≤ 𝑀) → (0 · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0) |
| 65 | 58, 64 | eqtrd 2656 |
. . . 4
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘 ≤ 𝑀) → ((𝐴‘𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0) |
| 66 | 16 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑀 ∈ ℝ) |
| 67 | 50 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘 ∈ (0...(𝑀 + 𝑁))) |
| 68 | 67, 51 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘 ∈ ℕ0) |
| 69 | 68 | nn0red 11352 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘 ∈ ℝ) |
| 70 | 17 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑁 ∈ ℝ) |
| 71 | 66, 69, 70 | leadd1d 10621 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀 ≤ 𝑘 ↔ (𝑀 + 𝑁) ≤ (𝑘 + 𝑁))) |
| 72 | 8 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀 + 𝑁) ∈
ℕ0) |
| 73 | 72 | nn0red 11352 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀 + 𝑁) ∈ ℝ) |
| 74 | 73, 69, 70 | lesubadd2d 10626 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (((𝑀 + 𝑁) − 𝑘) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝑘 + 𝑁))) |
| 75 | 71, 74 | bitr4d 271 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀 ≤ 𝑘 ↔ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁)) |
| 76 | 75 | notbid 308 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ 𝑀 ≤ 𝑘 ↔ ¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁)) |
| 77 | 76 | biimpa 501 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀 ≤ 𝑘) → ¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁) |
| 78 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆)) |
| 79 | 50, 61 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → ((𝑀 + 𝑁) − 𝑘) ∈
ℕ0) |
| 80 | 10, 4 | dgrub 23990 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ (Poly‘𝑆) ∧ ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0 ∧ (𝐵‘((𝑀 + 𝑁) − 𝑘)) ≠ 0) → ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁) |
| 81 | 80 | 3expia 1267 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ (Poly‘𝑆) ∧ ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0) → ((𝐵‘((𝑀 + 𝑁) − 𝑘)) ≠ 0 → ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁)) |
| 82 | 78, 79, 81 | syl2an 494 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ((𝐵‘((𝑀 + 𝑁) − 𝑘)) ≠ 0 → ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁)) |
| 83 | 82 | necon1bd 2812 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁 → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = 0)) |
| 84 | 83 | imp 445 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁) → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = 0) |
| 85 | 77, 84 | syldan 487 |
. . . . . 6
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀 ≤ 𝑘) → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = 0) |
| 86 | 85 | oveq2d 6666 |
. . . . 5
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀 ≤ 𝑘) → ((𝐴‘𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴‘𝑘) · 0)) |
| 87 | 40 | ad2antrr 762 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀 ≤ 𝑘) → 𝐴:ℕ0⟶ℂ) |
| 88 | 52 | ad2antlr 763 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀 ≤ 𝑘) → 𝑘 ∈ ℕ0) |
| 89 | 87, 88 | ffvelrnd 6360 |
. . . . . 6
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀 ≤ 𝑘) → (𝐴‘𝑘) ∈ ℂ) |
| 90 | 89 | mul01d 10235 |
. . . . 5
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀 ≤ 𝑘) → ((𝐴‘𝑘) · 0) = 0) |
| 91 | 86, 90 | eqtrd 2656 |
. . . 4
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀 ≤ 𝑘) → ((𝐴‘𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0) |
| 92 | | eldifsni 4320 |
. . . . . . 7
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → 𝑘 ≠ 𝑀) |
| 93 | 92 | adantl 482 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘 ≠ 𝑀) |
| 94 | 69, 66 | letri3d 10179 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑘 = 𝑀 ↔ (𝑘 ≤ 𝑀 ∧ 𝑀 ≤ 𝑘))) |
| 95 | 94 | necon3abid 2830 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑘 ≠ 𝑀 ↔ ¬ (𝑘 ≤ 𝑀 ∧ 𝑀 ≤ 𝑘))) |
| 96 | 93, 95 | mpbid 222 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ¬ (𝑘 ≤ 𝑀 ∧ 𝑀 ≤ 𝑘)) |
| 97 | | ianor 509 |
. . . . 5
⊢ (¬
(𝑘 ≤ 𝑀 ∧ 𝑀 ≤ 𝑘) ↔ (¬ 𝑘 ≤ 𝑀 ∨ ¬ 𝑀 ≤ 𝑘)) |
| 98 | 96, 97 | sylib 208 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ 𝑘 ≤ 𝑀 ∨ ¬ 𝑀 ≤ 𝑘)) |
| 99 | 65, 91, 98 | mpjaodan 827 |
. . 3
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ((𝐴‘𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0) |
| 100 | | fzfid 12772 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (0...(𝑀 + 𝑁)) ∈ Fin) |
| 101 | 26, 48, 99, 100 | fsumss 14456 |
. 2
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → Σ𝑘 ∈ {𝑀} ((𝐴‘𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴‘𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘)))) |
| 102 | 32 | sumsn 14475 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ ((𝐴‘𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) ∈ ℂ) → Σ𝑘 ∈ {𝑀} ((𝐴‘𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴‘𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀)))) |
| 103 | 15, 46, 102 | syl2anc 693 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → Σ𝑘 ∈ {𝑀} ((𝐴‘𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴‘𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀)))) |
| 104 | 103, 38 | eqtrd 2656 |
. 2
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → Σ𝑘 ∈ {𝑀} ((𝐴‘𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴‘𝑀) · (𝐵‘𝑁))) |
| 105 | 12, 101, 104 | 3eqtr2d 2662 |
1
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘𝑓 · 𝐺))‘(𝑀 + 𝑁)) = ((𝐴‘𝑀) · (𝐵‘𝑁))) |