MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemulhi Structured version   Visualization version   GIF version

Theorem coemulhi 24010
Description: The leading coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
coeadd.2 𝐵 = (coeff‘𝐺)
coemulhi.3 𝑀 = (deg‘𝐹)
coemulhi.4 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
coemulhi ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹𝑓 · 𝐺))‘(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐵𝑁)))

Proof of Theorem coemulhi
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 coemulhi.3 . . . . 5 𝑀 = (deg‘𝐹)
2 dgrcl 23989 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
31, 2syl5eqel 2705 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
4 coemulhi.4 . . . . 5 𝑁 = (deg‘𝐺)
5 dgrcl 23989 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
64, 5syl5eqel 2705 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
7 nn0addcl 11328 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
83, 6, 7syl2an 494 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 + 𝑁) ∈ ℕ0)
9 coefv0.1 . . . 4 𝐴 = (coeff‘𝐹)
10 coeadd.2 . . . 4 𝐵 = (coeff‘𝐺)
119, 10coemul 24008 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((coeff‘(𝐹𝑓 · 𝐺))‘(𝑀 + 𝑁)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))))
128, 11mpd3an3 1425 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹𝑓 · 𝐺))‘(𝑀 + 𝑁)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))))
136adantl 482 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℕ0)
1413nn0ge0d 11354 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 0 ≤ 𝑁)
153adantr 481 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℕ0)
1615nn0red 11352 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℝ)
1713nn0red 11352 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℝ)
1816, 17addge01d 10615 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (0 ≤ 𝑁𝑀 ≤ (𝑀 + 𝑁)))
1914, 18mpbid 222 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ≤ (𝑀 + 𝑁))
20 nn0uz 11722 . . . . . . 7 0 = (ℤ‘0)
2115, 20syl6eleq 2711 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ (ℤ‘0))
228nn0zd 11480 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 + 𝑁) ∈ ℤ)
23 elfz5 12334 . . . . . 6 ((𝑀 ∈ (ℤ‘0) ∧ (𝑀 + 𝑁) ∈ ℤ) → (𝑀 ∈ (0...(𝑀 + 𝑁)) ↔ 𝑀 ≤ (𝑀 + 𝑁)))
2421, 22, 23syl2anc 693 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 ∈ (0...(𝑀 + 𝑁)) ↔ 𝑀 ≤ (𝑀 + 𝑁)))
2519, 24mpbird 247 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ (0...(𝑀 + 𝑁)))
2625snssd 4340 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → {𝑀} ⊆ (0...(𝑀 + 𝑁)))
27 elsni 4194 . . . . . 6 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
2827adantl 482 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → 𝑘 = 𝑀)
29 fveq2 6191 . . . . . 6 (𝑘 = 𝑀 → (𝐴𝑘) = (𝐴𝑀))
30 oveq2 6658 . . . . . . 7 (𝑘 = 𝑀 → ((𝑀 + 𝑁) − 𝑘) = ((𝑀 + 𝑁) − 𝑀))
3130fveq2d 6195 . . . . . 6 (𝑘 = 𝑀 → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = (𝐵‘((𝑀 + 𝑁) − 𝑀)))
3229, 31oveq12d 6668 . . . . 5 (𝑘 = 𝑀 → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))))
3328, 32syl 17 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))))
3416recnd 10068 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℂ)
3517recnd 10068 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℂ)
3634, 35pncan2d 10394 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
3736fveq2d 6195 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵‘((𝑀 + 𝑁) − 𝑀)) = (𝐵𝑁))
3837oveq2d 6666 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) = ((𝐴𝑀) · (𝐵𝑁)))
399coef3 23988 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
4039adantr 481 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴:ℕ0⟶ℂ)
4140, 15ffvelrnd 6360 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴𝑀) ∈ ℂ)
4210coef3 23988 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ)
4342adantl 482 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵:ℕ0⟶ℂ)
4443, 13ffvelrnd 6360 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵𝑁) ∈ ℂ)
4541, 44mulcld 10060 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴𝑀) · (𝐵𝑁)) ∈ ℂ)
4638, 45eqeltrd 2701 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) ∈ ℂ)
4746adantr 481 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) ∈ ℂ)
4833, 47eqeltrd 2701 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) ∈ ℂ)
49 simpl 473 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
50 eldifi 3732 . . . . . . . . . 10 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
51 elfznn0 12433 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑀 + 𝑁)) → 𝑘 ∈ ℕ0)
5250, 51syl 17 . . . . . . . . 9 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → 𝑘 ∈ ℕ0)
539, 1dgrub 23990 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑀)
54533expia 1267 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
5549, 52, 54syl2an 494 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
5655necon1bd 2812 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ 𝑘𝑀 → (𝐴𝑘) = 0))
5756imp 445 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → (𝐴𝑘) = 0)
5857oveq1d 6665 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = (0 · (𝐵‘((𝑀 + 𝑁) − 𝑘))))
5943ad2antrr 762 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → 𝐵:ℕ0⟶ℂ)
6050ad2antlr 763 . . . . . . . 8 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
61 fznn0sub 12373 . . . . . . . 8 (𝑘 ∈ (0...(𝑀 + 𝑁)) → ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0)
6260, 61syl 17 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0)
6359, 62ffvelrnd 6360 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → (𝐵‘((𝑀 + 𝑁) − 𝑘)) ∈ ℂ)
6463mul02d 10234 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → (0 · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0)
6558, 64eqtrd 2656 . . . 4 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0)
6616adantr 481 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑀 ∈ ℝ)
6750adantl 482 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
6867, 51syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘 ∈ ℕ0)
6968nn0red 11352 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘 ∈ ℝ)
7017adantr 481 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑁 ∈ ℝ)
7166, 69, 70leadd1d 10621 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀𝑘 ↔ (𝑀 + 𝑁) ≤ (𝑘 + 𝑁)))
728adantr 481 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀 + 𝑁) ∈ ℕ0)
7372nn0red 11352 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀 + 𝑁) ∈ ℝ)
7473, 69, 70lesubadd2d 10626 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (((𝑀 + 𝑁) − 𝑘) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝑘 + 𝑁)))
7571, 74bitr4d 271 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀𝑘 ↔ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁))
7675notbid 308 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ 𝑀𝑘 ↔ ¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁))
7776biimpa 501 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → ¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁)
78 simpr 477 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
7950, 61syl 17 . . . . . . . . . 10 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0)
8010, 4dgrub 23990 . . . . . . . . . . 11 ((𝐺 ∈ (Poly‘𝑆) ∧ ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0 ∧ (𝐵‘((𝑀 + 𝑁) − 𝑘)) ≠ 0) → ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁)
81803expia 1267 . . . . . . . . . 10 ((𝐺 ∈ (Poly‘𝑆) ∧ ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0) → ((𝐵‘((𝑀 + 𝑁) − 𝑘)) ≠ 0 → ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁))
8278, 79, 81syl2an 494 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ((𝐵‘((𝑀 + 𝑁) − 𝑘)) ≠ 0 → ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁))
8382necon1bd 2812 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁 → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = 0))
8483imp 445 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁) → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = 0)
8577, 84syldan 487 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = 0)
8685oveq2d 6666 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑘) · 0))
8740ad2antrr 762 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → 𝐴:ℕ0⟶ℂ)
8852ad2antlr 763 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → 𝑘 ∈ ℕ0)
8987, 88ffvelrnd 6360 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → (𝐴𝑘) ∈ ℂ)
9089mul01d 10235 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → ((𝐴𝑘) · 0) = 0)
9186, 90eqtrd 2656 . . . 4 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0)
92 eldifsni 4320 . . . . . . 7 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → 𝑘𝑀)
9392adantl 482 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘𝑀)
9469, 66letri3d 10179 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑘 = 𝑀 ↔ (𝑘𝑀𝑀𝑘)))
9594necon3abid 2830 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑘𝑀 ↔ ¬ (𝑘𝑀𝑀𝑘)))
9693, 95mpbid 222 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ¬ (𝑘𝑀𝑀𝑘))
97 ianor 509 . . . . 5 (¬ (𝑘𝑀𝑀𝑘) ↔ (¬ 𝑘𝑀 ∨ ¬ 𝑀𝑘))
9896, 97sylib 208 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ 𝑘𝑀 ∨ ¬ 𝑀𝑘))
9965, 91, 98mpjaodan 827 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0)
100 fzfid 12772 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (0...(𝑀 + 𝑁)) ∈ Fin)
10126, 48, 99, 100fsumss 14456 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → Σ𝑘 ∈ {𝑀} ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))))
10232sumsn 14475 . . . 4 ((𝑀 ∈ ℕ0 ∧ ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) ∈ ℂ) → Σ𝑘 ∈ {𝑀} ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))))
10315, 46, 102syl2anc 693 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → Σ𝑘 ∈ {𝑀} ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))))
104103, 38eqtrd 2656 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → Σ𝑘 ∈ {𝑀} ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵𝑁)))
10512, 101, 1043eqtr2d 2662 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹𝑓 · 𝐺))‘(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  {csn 4177   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941  cle 10075  cmin 10266  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  Σcsu 14416  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947
This theorem is referenced by:  dgrmul  24026  plymul0or  24036  plydivlem4  24051  vieta1lem2  24066
  Copyright terms: Public domain W3C validator