![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > congrep | Structured version Visualization version GIF version |
Description: Every integer is congruent to some number in the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
Ref | Expression |
---|---|
congrep | ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎 − 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zmodfz 12692 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑁 mod 𝐴) ∈ (0...(𝐴 − 1))) | |
2 | 1 | ancoms 469 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝐴) ∈ (0...(𝐴 − 1))) |
3 | nnz 11399 | . . . 4 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
4 | 3 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℤ) |
5 | simpr 477 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
6 | zmodcl 12690 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑁 mod 𝐴) ∈ ℕ0) | |
7 | 6 | ancoms 469 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝐴) ∈ ℕ0) |
8 | 7 | nn0zd 11480 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝐴) ∈ ℤ) |
9 | zre 11381 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
10 | nnrp 11842 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) | |
11 | moddifz 12682 | . . . . 5 ⊢ ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ) | |
12 | 9, 10, 11 | syl2anr 495 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ) |
13 | nnne0 11053 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
14 | 13 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ≠ 0) |
15 | 5, 8 | zsubcld 11487 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 − (𝑁 mod 𝐴)) ∈ ℤ) |
16 | dvdsval2 14986 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ∧ (𝑁 − (𝑁 mod 𝐴)) ∈ ℤ) → (𝐴 ∥ (𝑁 − (𝑁 mod 𝐴)) ↔ ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ)) | |
17 | 4, 14, 15, 16 | syl3anc 1326 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝐴 ∥ (𝑁 − (𝑁 mod 𝐴)) ↔ ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ)) |
18 | 12, 17 | mpbird 247 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∥ (𝑁 − (𝑁 mod 𝐴))) |
19 | congsym 37535 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑁 mod 𝐴) ∈ ℤ ∧ 𝐴 ∥ (𝑁 − (𝑁 mod 𝐴)))) → 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁)) | |
20 | 4, 5, 8, 18, 19 | syl22anc 1327 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁)) |
21 | oveq1 6657 | . . . 4 ⊢ (𝑎 = (𝑁 mod 𝐴) → (𝑎 − 𝑁) = ((𝑁 mod 𝐴) − 𝑁)) | |
22 | 21 | breq2d 4665 | . . 3 ⊢ (𝑎 = (𝑁 mod 𝐴) → (𝐴 ∥ (𝑎 − 𝑁) ↔ 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁))) |
23 | 22 | rspcev 3309 | . 2 ⊢ (((𝑁 mod 𝐴) ∈ (0...(𝐴 − 1)) ∧ 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁)) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎 − 𝑁)) |
24 | 2, 20, 23 | syl2anc 693 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎 − 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∃wrex 2913 class class class wbr 4653 (class class class)co 6650 ℝcr 9935 0cc0 9936 1c1 9937 − cmin 10266 / cdiv 10684 ℕcn 11020 ℕ0cn0 11292 ℤcz 11377 ℝ+crp 11832 ...cfz 12326 mod cmo 12668 ∥ cdvds 14983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fl 12593 df-mod 12669 df-dvds 14984 |
This theorem is referenced by: acongrep 37547 |
Copyright terms: Public domain | W3C validator |