![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrmhm | Structured version Visualization version GIF version |
Description: A Dirichlet character is a monoid homomorphism. (Contributed by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
Ref | Expression |
---|---|
dchrmhm | ⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrmhm.g | . . . . 5 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchrmhm.z | . . . . 5 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | eqid 2622 | . . . . 5 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
4 | eqid 2622 | . . . . 5 ⊢ (Unit‘𝑍) = (Unit‘𝑍) | |
5 | dchrmhm.b | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
6 | 1, 5 | dchrrcl 24965 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → 𝑁 ∈ ℕ) |
7 | 1, 2, 3, 4, 6, 5 | dchrelbas 24961 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (((Base‘𝑍) ∖ (Unit‘𝑍)) × {0}) ⊆ 𝑥))) |
8 | 7 | ibi 256 | . . 3 ⊢ (𝑥 ∈ 𝐷 → (𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (((Base‘𝑍) ∖ (Unit‘𝑍)) × {0}) ⊆ 𝑥)) |
9 | 8 | simpld 475 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
10 | 9 | ssriv 3607 | 1 ⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∖ cdif 3571 ⊆ wss 3574 {csn 4177 × cxp 5112 ‘cfv 5888 (class class class)co 6650 0cc0 9936 Basecbs 15857 MndHom cmhm 17333 mulGrpcmgp 18489 Unitcui 18639 ℂfldccnfld 19746 ℤ/nℤczn 19851 DChrcdchr 24957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-plusg 15954 df-dchr 24958 |
This theorem is referenced by: dchrzrh1 24969 dchrzrhmul 24971 dchrinvcl 24978 dchrfi 24980 dchrghm 24981 dchrabs 24985 dchrsum2 24993 sumdchr2 24995 sum2dchr 24999 dchrisum0flblem1 25197 rpvmasum2 25201 |
Copyright terms: Public domain | W3C validator |