MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmhm Structured version   Visualization version   GIF version

Theorem dchrmhm 24966
Description: A Dirichlet character is a monoid homomorphism. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrmhm 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))

Proof of Theorem dchrmhm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dchrmhm.g . . . . 5 𝐺 = (DChr‘𝑁)
2 dchrmhm.z . . . . 5 𝑍 = (ℤ/nℤ‘𝑁)
3 eqid 2622 . . . . 5 (Base‘𝑍) = (Base‘𝑍)
4 eqid 2622 . . . . 5 (Unit‘𝑍) = (Unit‘𝑍)
5 dchrmhm.b . . . . . 6 𝐷 = (Base‘𝐺)
61, 5dchrrcl 24965 . . . . 5 (𝑥𝐷𝑁 ∈ ℕ)
71, 2, 3, 4, 6, 5dchrelbas 24961 . . . 4 (𝑥𝐷 → (𝑥𝐷 ↔ (𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (((Base‘𝑍) ∖ (Unit‘𝑍)) × {0}) ⊆ 𝑥)))
87ibi 256 . . 3 (𝑥𝐷 → (𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (((Base‘𝑍) ∖ (Unit‘𝑍)) × {0}) ⊆ 𝑥))
98simpld 475 . 2 (𝑥𝐷𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
109ssriv 3607 1 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  cdif 3571  wss 3574  {csn 4177   × cxp 5112  cfv 5888  (class class class)co 6650  0cc0 9936  Basecbs 15857   MndHom cmhm 17333  mulGrpcmgp 18489  Unitcui 18639  fldccnfld 19746  ℤ/nczn 19851  DChrcdchr 24957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-dchr 24958
This theorem is referenced by:  dchrzrh1  24969  dchrzrhmul  24971  dchrinvcl  24978  dchrfi  24980  dchrghm  24981  dchrabs  24985  dchrsum2  24993  sumdchr2  24995  sum2dchr  24999  dchrisum0flblem1  25197  rpvmasum2  25201
  Copyright terms: Public domain W3C validator