MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrzrhmul Structured version   Visualization version   GIF version

Theorem dchrzrhmul 24971
Description: A Dirichlet character is completely multiplicative. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrelbas4.l 𝐿 = (ℤRHom‘𝑍)
dchrzrh1.x (𝜑𝑋𝐷)
dchrzrh1.a (𝜑𝐴 ∈ ℤ)
dchrzrh1.c (𝜑𝐶 ∈ ℤ)
Assertion
Ref Expression
dchrzrhmul (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿𝐴)) · (𝑋‘(𝐿𝐶))))

Proof of Theorem dchrzrhmul
StepHypRef Expression
1 dchrzrh1.x . . . . . . . . 9 (𝜑𝑋𝐷)
2 dchrmhm.g . . . . . . . . . 10 𝐺 = (DChr‘𝑁)
3 dchrmhm.b . . . . . . . . . 10 𝐷 = (Base‘𝐺)
42, 3dchrrcl 24965 . . . . . . . . 9 (𝑋𝐷𝑁 ∈ ℕ)
51, 4syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
65nnnn0d 11351 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
7 dchrmhm.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
87zncrng 19893 . . . . . . 7 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
96, 8syl 17 . . . . . 6 (𝜑𝑍 ∈ CRing)
10 crngring 18558 . . . . . 6 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
119, 10syl 17 . . . . 5 (𝜑𝑍 ∈ Ring)
12 dchrelbas4.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
1312zrhrhm 19860 . . . . 5 (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍))
1411, 13syl 17 . . . 4 (𝜑𝐿 ∈ (ℤring RingHom 𝑍))
15 dchrzrh1.a . . . 4 (𝜑𝐴 ∈ ℤ)
16 dchrzrh1.c . . . 4 (𝜑𝐶 ∈ ℤ)
17 zringbas 19824 . . . . 5 ℤ = (Base‘ℤring)
18 zringmulr 19827 . . . . 5 · = (.r‘ℤring)
19 eqid 2622 . . . . 5 (.r𝑍) = (.r𝑍)
2017, 18, 19rhmmul 18727 . . . 4 ((𝐿 ∈ (ℤring RingHom 𝑍) ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐿‘(𝐴 · 𝐶)) = ((𝐿𝐴)(.r𝑍)(𝐿𝐶)))
2114, 15, 16, 20syl3anc 1326 . . 3 (𝜑 → (𝐿‘(𝐴 · 𝐶)) = ((𝐿𝐴)(.r𝑍)(𝐿𝐶)))
2221fveq2d 6195 . 2 (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = (𝑋‘((𝐿𝐴)(.r𝑍)(𝐿𝐶))))
232, 7, 3dchrmhm 24966 . . . 4 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
2423, 1sseldi 3601 . . 3 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
25 eqid 2622 . . . . . 6 (Base‘𝑍) = (Base‘𝑍)
2617, 25rhmf 18726 . . . . 5 (𝐿 ∈ (ℤring RingHom 𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
2714, 26syl 17 . . . 4 (𝜑𝐿:ℤ⟶(Base‘𝑍))
2827, 15ffvelrnd 6360 . . 3 (𝜑 → (𝐿𝐴) ∈ (Base‘𝑍))
2927, 16ffvelrnd 6360 . . 3 (𝜑 → (𝐿𝐶) ∈ (Base‘𝑍))
30 eqid 2622 . . . . 5 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3130, 25mgpbas 18495 . . . 4 (Base‘𝑍) = (Base‘(mulGrp‘𝑍))
3230, 19mgpplusg 18493 . . . 4 (.r𝑍) = (+g‘(mulGrp‘𝑍))
33 eqid 2622 . . . . 5 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
34 cnfldmul 19752 . . . . 5 · = (.r‘ℂfld)
3533, 34mgpplusg 18493 . . . 4 · = (+g‘(mulGrp‘ℂfld))
3631, 32, 35mhmlin 17342 . . 3 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (𝐿𝐴) ∈ (Base‘𝑍) ∧ (𝐿𝐶) ∈ (Base‘𝑍)) → (𝑋‘((𝐿𝐴)(.r𝑍)(𝐿𝐶))) = ((𝑋‘(𝐿𝐴)) · (𝑋‘(𝐿𝐶))))
3724, 28, 29, 36syl3anc 1326 . 2 (𝜑 → (𝑋‘((𝐿𝐴)(.r𝑍)(𝐿𝐶))) = ((𝑋‘(𝐿𝐴)) · (𝑋‘(𝐿𝐶))))
3822, 37eqtrd 2656 1 (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿𝐴)) · (𝑋‘(𝐿𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wf 5884  cfv 5888  (class class class)co 6650   · cmul 9941  cn 11020  0cn0 11292  cz 11377  Basecbs 15857  .rcmulr 15942   MndHom cmhm 17333  mulGrpcmgp 18489  Ringcrg 18547  CRingccrg 18548   RingHom crh 18712  fldccnfld 19746  ringzring 19818  ℤRHomczrh 19848  ℤ/nczn 19851  DChrcdchr 24957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-seq 12802  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-dchr 24958
This theorem is referenced by:  dchrmusum2  25183  dchrvmasumlem1  25184  dchrvmasum2lem  25185  dchrisum0fmul  25195
  Copyright terms: Public domain W3C validator