MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diag2 Structured version   Visualization version   GIF version

Theorem diag2 16885
Description: Value of the diagonal functor at a morphism. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
diag2.l 𝐿 = (𝐶Δfunc𝐷)
diag2.a 𝐴 = (Base‘𝐶)
diag2.b 𝐵 = (Base‘𝐷)
diag2.h 𝐻 = (Hom ‘𝐶)
diag2.c (𝜑𝐶 ∈ Cat)
diag2.d (𝜑𝐷 ∈ Cat)
diag2.x (𝜑𝑋𝐴)
diag2.y (𝜑𝑌𝐴)
diag2.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
diag2 (𝜑 → ((𝑋(2nd𝐿)𝑌)‘𝐹) = (𝐵 × {𝐹}))

Proof of Theorem diag2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 diag2.l . . . . . 6 𝐿 = (𝐶Δfunc𝐷)
2 diag2.c . . . . . 6 (𝜑𝐶 ∈ Cat)
3 diag2.d . . . . . 6 (𝜑𝐷 ∈ Cat)
41, 2, 3diagval 16880 . . . . 5 (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
54fveq2d 6195 . . . 4 (𝜑 → (2nd𝐿) = (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))))
65oveqd 6667 . . 3 (𝜑 → (𝑋(2nd𝐿)𝑌) = (𝑋(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))𝑌))
76fveq1d 6193 . 2 (𝜑 → ((𝑋(2nd𝐿)𝑌)‘𝐹) = ((𝑋(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))𝑌)‘𝐹))
8 eqid 2622 . . 3 (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))
9 diag2.a . . 3 𝐴 = (Base‘𝐶)
10 eqid 2622 . . . 4 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
11 eqid 2622 . . . 4 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
1210, 2, 3, 111stfcl 16837 . . 3 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
13 diag2.b . . 3 𝐵 = (Base‘𝐷)
14 diag2.h . . 3 𝐻 = (Hom ‘𝐶)
15 eqid 2622 . . 3 (Id‘𝐷) = (Id‘𝐷)
16 diag2.x . . 3 (𝜑𝑋𝐴)
17 diag2.y . . 3 (𝜑𝑌𝐴)
18 diag2.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
19 eqid 2622 . . 3 ((𝑋(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))𝑌)‘𝐹) = ((𝑋(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))𝑌)‘𝐹)
208, 9, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19curf2 16869 . 2 (𝜑 → ((𝑋(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))𝑌)‘𝐹) = (𝑥𝐵 ↦ (𝐹(⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩)((Id‘𝐷)‘𝑥))))
2110, 9, 13xpcbas 16818 . . . . . . 7 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
22 eqid 2622 . . . . . . 7 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
232adantr 481 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐶 ∈ Cat)
243adantr 481 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐷 ∈ Cat)
25 opelxpi 5148 . . . . . . . 8 ((𝑋𝐴𝑥𝐵) → ⟨𝑋, 𝑥⟩ ∈ (𝐴 × 𝐵))
2616, 25sylan 488 . . . . . . 7 ((𝜑𝑥𝐵) → ⟨𝑋, 𝑥⟩ ∈ (𝐴 × 𝐵))
27 opelxpi 5148 . . . . . . . 8 ((𝑌𝐴𝑥𝐵) → ⟨𝑌, 𝑥⟩ ∈ (𝐴 × 𝐵))
2817, 27sylan 488 . . . . . . 7 ((𝜑𝑥𝐵) → ⟨𝑌, 𝑥⟩ ∈ (𝐴 × 𝐵))
2910, 21, 22, 23, 24, 11, 26, 281stf2 16833 . . . . . 6 ((𝜑𝑥𝐵) → (⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩) = (1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩)))
3029oveqd 6667 . . . . 5 ((𝜑𝑥𝐵) → (𝐹(⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩)((Id‘𝐷)‘𝑥)) = (𝐹(1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))((Id‘𝐷)‘𝑥)))
31 df-ov 6653 . . . . . 6 (𝐹(1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))((Id‘𝐷)‘𝑥)) = ((1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩)
3218adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝐹 ∈ (𝑋𝐻𝑌))
33 eqid 2622 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
34 simpr 477 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝑥𝐵)
3513, 33, 15, 24, 34catidcl 16343 . . . . . . . . 9 ((𝜑𝑥𝐵) → ((Id‘𝐷)‘𝑥) ∈ (𝑥(Hom ‘𝐷)𝑥))
36 opelxpi 5148 . . . . . . . . 9 ((𝐹 ∈ (𝑋𝐻𝑌) ∧ ((Id‘𝐷)‘𝑥) ∈ (𝑥(Hom ‘𝐷)𝑥)) → ⟨𝐹, ((Id‘𝐷)‘𝑥)⟩ ∈ ((𝑋𝐻𝑌) × (𝑥(Hom ‘𝐷)𝑥)))
3732, 35, 36syl2anc 693 . . . . . . . 8 ((𝜑𝑥𝐵) → ⟨𝐹, ((Id‘𝐷)‘𝑥)⟩ ∈ ((𝑋𝐻𝑌) × (𝑥(Hom ‘𝐷)𝑥)))
3816adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑋𝐴)
3917adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑌𝐴)
4010, 9, 13, 14, 33, 38, 34, 39, 34, 22xpchom2 16826 . . . . . . . 8 ((𝜑𝑥𝐵) → (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩) = ((𝑋𝐻𝑌) × (𝑥(Hom ‘𝐷)𝑥)))
4137, 40eleqtrrd 2704 . . . . . . 7 ((𝜑𝑥𝐵) → ⟨𝐹, ((Id‘𝐷)‘𝑥)⟩ ∈ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))
42 fvres 6207 . . . . . . 7 (⟨𝐹, ((Id‘𝐷)‘𝑥)⟩ ∈ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩) → ((1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩) = (1st ‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩))
4341, 42syl 17 . . . . . 6 ((𝜑𝑥𝐵) → ((1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩) = (1st ‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩))
4431, 43syl5eq 2668 . . . . 5 ((𝜑𝑥𝐵) → (𝐹(1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))((Id‘𝐷)‘𝑥)) = (1st ‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩))
45 op1stg 7180 . . . . . 6 ((𝐹 ∈ (𝑋𝐻𝑌) ∧ ((Id‘𝐷)‘𝑥) ∈ (𝑥(Hom ‘𝐷)𝑥)) → (1st ‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩) = 𝐹)
4632, 35, 45syl2anc 693 . . . . 5 ((𝜑𝑥𝐵) → (1st ‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩) = 𝐹)
4730, 44, 463eqtrd 2660 . . . 4 ((𝜑𝑥𝐵) → (𝐹(⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩)((Id‘𝐷)‘𝑥)) = 𝐹)
4847mpteq2dva 4744 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝐹(⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩)((Id‘𝐷)‘𝑥))) = (𝑥𝐵𝐹))
49 fconstmpt 5163 . . 3 (𝐵 × {𝐹}) = (𝑥𝐵𝐹)
5048, 49syl6eqr 2674 . 2 (𝜑 → (𝑥𝐵 ↦ (𝐹(⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩)((Id‘𝐷)‘𝑥))) = (𝐵 × {𝐹}))
517, 20, 503eqtrd 2660 1 (𝜑 → ((𝑋(2nd𝐿)𝑌)‘𝐹) = (𝐵 × {𝐹}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {csn 4177  cop 4183  cmpt 4729   × cxp 5112  cres 5116  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  Basecbs 15857  Hom chom 15952  Catccat 16325  Idccid 16326   ×c cxpc 16808   1stF c1stf 16809   curryF ccurf 16850  Δfunccdiag 16852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-func 16518  df-xpc 16812  df-1stf 16813  df-curf 16854  df-diag 16856
This theorem is referenced by:  diag2cl  16886
  Copyright terms: Public domain W3C validator