![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpchom2 | Structured version Visualization version GIF version |
Description: Value of the set of morphisms in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
xpcco2.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
xpcco2.x | ⊢ 𝑋 = (Base‘𝐶) |
xpcco2.y | ⊢ 𝑌 = (Base‘𝐷) |
xpcco2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
xpcco2.j | ⊢ 𝐽 = (Hom ‘𝐷) |
xpcco2.m | ⊢ (𝜑 → 𝑀 ∈ 𝑋) |
xpcco2.n | ⊢ (𝜑 → 𝑁 ∈ 𝑌) |
xpcco2.p | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
xpcco2.q | ⊢ (𝜑 → 𝑄 ∈ 𝑌) |
xpchom2.k | ⊢ 𝐾 = (Hom ‘𝑇) |
Ref | Expression |
---|---|
xpchom2 | ⊢ (𝜑 → (〈𝑀, 𝑁〉𝐾〈𝑃, 𝑄〉) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcco2.t | . . 3 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
2 | xpcco2.x | . . . 4 ⊢ 𝑋 = (Base‘𝐶) | |
3 | xpcco2.y | . . . 4 ⊢ 𝑌 = (Base‘𝐷) | |
4 | 1, 2, 3 | xpcbas 16818 | . . 3 ⊢ (𝑋 × 𝑌) = (Base‘𝑇) |
5 | xpcco2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
6 | xpcco2.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
7 | xpchom2.k | . . 3 ⊢ 𝐾 = (Hom ‘𝑇) | |
8 | xpcco2.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑋) | |
9 | xpcco2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑌) | |
10 | opelxpi 5148 | . . . 4 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌) → 〈𝑀, 𝑁〉 ∈ (𝑋 × 𝑌)) | |
11 | 8, 9, 10 | syl2anc 693 | . . 3 ⊢ (𝜑 → 〈𝑀, 𝑁〉 ∈ (𝑋 × 𝑌)) |
12 | xpcco2.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝑋) | |
13 | xpcco2.q | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑌) | |
14 | opelxpi 5148 | . . . 4 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌) → 〈𝑃, 𝑄〉 ∈ (𝑋 × 𝑌)) | |
15 | 12, 13, 14 | syl2anc 693 | . . 3 ⊢ (𝜑 → 〈𝑃, 𝑄〉 ∈ (𝑋 × 𝑌)) |
16 | 1, 4, 5, 6, 7, 11, 15 | xpchom 16820 | . 2 ⊢ (𝜑 → (〈𝑀, 𝑁〉𝐾〈𝑃, 𝑄〉) = (((1st ‘〈𝑀, 𝑁〉)𝐻(1st ‘〈𝑃, 𝑄〉)) × ((2nd ‘〈𝑀, 𝑁〉)𝐽(2nd ‘〈𝑃, 𝑄〉)))) |
17 | op1stg 7180 | . . . . 5 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌) → (1st ‘〈𝑀, 𝑁〉) = 𝑀) | |
18 | 8, 9, 17 | syl2anc 693 | . . . 4 ⊢ (𝜑 → (1st ‘〈𝑀, 𝑁〉) = 𝑀) |
19 | op1stg 7180 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌) → (1st ‘〈𝑃, 𝑄〉) = 𝑃) | |
20 | 12, 13, 19 | syl2anc 693 | . . . 4 ⊢ (𝜑 → (1st ‘〈𝑃, 𝑄〉) = 𝑃) |
21 | 18, 20 | oveq12d 6668 | . . 3 ⊢ (𝜑 → ((1st ‘〈𝑀, 𝑁〉)𝐻(1st ‘〈𝑃, 𝑄〉)) = (𝑀𝐻𝑃)) |
22 | op2ndg 7181 | . . . . 5 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌) → (2nd ‘〈𝑀, 𝑁〉) = 𝑁) | |
23 | 8, 9, 22 | syl2anc 693 | . . . 4 ⊢ (𝜑 → (2nd ‘〈𝑀, 𝑁〉) = 𝑁) |
24 | op2ndg 7181 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌) → (2nd ‘〈𝑃, 𝑄〉) = 𝑄) | |
25 | 12, 13, 24 | syl2anc 693 | . . . 4 ⊢ (𝜑 → (2nd ‘〈𝑃, 𝑄〉) = 𝑄) |
26 | 23, 25 | oveq12d 6668 | . . 3 ⊢ (𝜑 → ((2nd ‘〈𝑀, 𝑁〉)𝐽(2nd ‘〈𝑃, 𝑄〉)) = (𝑁𝐽𝑄)) |
27 | 21, 26 | xpeq12d 5140 | . 2 ⊢ (𝜑 → (((1st ‘〈𝑀, 𝑁〉)𝐻(1st ‘〈𝑃, 𝑄〉)) × ((2nd ‘〈𝑀, 𝑁〉)𝐽(2nd ‘〈𝑃, 𝑄〉))) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
28 | 16, 27 | eqtrd 2656 | 1 ⊢ (𝜑 → (〈𝑀, 𝑁〉𝐾〈𝑃, 𝑄〉) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 〈cop 4183 × cxp 5112 ‘cfv 5888 (class class class)co 6650 1st c1st 7166 2nd c2nd 7167 Basecbs 15857 Hom chom 15952 ×c cxpc 16808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-hom 15966 df-cco 15967 df-xpc 16812 |
This theorem is referenced by: xpcco2 16827 prfcl 16843 evlfcl 16862 curf1cl 16868 curf2cl 16871 curfcl 16872 uncf2 16877 uncfcurf 16879 diag12 16884 diag2 16885 curf2ndf 16887 yonedalem22 16918 yonedalem3b 16919 |
Copyright terms: Public domain | W3C validator |