MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem9 Structured version   Visualization version   GIF version

Theorem divalglem9 15124
Description: Lemma for divalg 15126. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem8.1 𝑁 ∈ ℤ
divalglem8.2 𝐷 ∈ ℤ
divalglem8.3 𝐷 ≠ 0
divalglem8.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
divalglem9.5 𝑅 = inf(𝑆, ℝ, < )
Assertion
Ref Expression
divalglem9 ∃!𝑥𝑆 𝑥 < (abs‘𝐷)
Distinct variable groups:   𝐷,𝑟,𝑥   𝑁,𝑟,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑟)   𝑆(𝑟)

Proof of Theorem divalglem9
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divalglem9.5 . . . 4 𝑅 = inf(𝑆, ℝ, < )
2 divalglem8.1 . . . . 5 𝑁 ∈ ℤ
3 divalglem8.2 . . . . 5 𝐷 ∈ ℤ
4 divalglem8.3 . . . . 5 𝐷 ≠ 0
5 divalglem8.4 . . . . 5 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
62, 3, 4, 5divalglem2 15118 . . . 4 inf(𝑆, ℝ, < ) ∈ 𝑆
71, 6eqeltri 2697 . . 3 𝑅𝑆
82, 3, 4, 5, 1divalglem5 15120 . . . 4 (0 ≤ 𝑅𝑅 < (abs‘𝐷))
98simpri 478 . . 3 𝑅 < (abs‘𝐷)
10 breq1 4656 . . . 4 (𝑥 = 𝑅 → (𝑥 < (abs‘𝐷) ↔ 𝑅 < (abs‘𝐷)))
1110rspcev 3309 . . 3 ((𝑅𝑆𝑅 < (abs‘𝐷)) → ∃𝑥𝑆 𝑥 < (abs‘𝐷))
127, 9, 11mp2an 708 . 2 𝑥𝑆 𝑥 < (abs‘𝐷)
13 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑟 = 𝑥 → (𝑁𝑟) = (𝑁𝑥))
1413breq2d 4665 . . . . . . . . . . . . . 14 (𝑟 = 𝑥 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑥)))
1514, 5elrab2 3366 . . . . . . . . . . . . 13 (𝑥𝑆 ↔ (𝑥 ∈ ℕ0𝐷 ∥ (𝑁𝑥)))
1615simplbi 476 . . . . . . . . . . . 12 (𝑥𝑆𝑥 ∈ ℕ0)
1716nn0zd 11480 . . . . . . . . . . 11 (𝑥𝑆𝑥 ∈ ℤ)
18 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑟 = 𝑦 → (𝑁𝑟) = (𝑁𝑦))
1918breq2d 4665 . . . . . . . . . . . . . 14 (𝑟 = 𝑦 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑦)))
2019, 5elrab2 3366 . . . . . . . . . . . . 13 (𝑦𝑆 ↔ (𝑦 ∈ ℕ0𝐷 ∥ (𝑁𝑦)))
2120simplbi 476 . . . . . . . . . . . 12 (𝑦𝑆𝑦 ∈ ℕ0)
2221nn0zd 11480 . . . . . . . . . . 11 (𝑦𝑆𝑦 ∈ ℤ)
23 zsubcl 11419 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁𝑥) ∈ ℤ)
242, 23mpan 706 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑁𝑥) ∈ ℤ)
25 zsubcl 11419 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑁𝑦) ∈ ℤ)
262, 25mpan 706 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → (𝑁𝑦) ∈ ℤ)
2724, 26anim12i 590 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ))
2817, 22, 27syl2an 494 . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → ((𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ))
2915simprbi 480 . . . . . . . . . . 11 (𝑥𝑆𝐷 ∥ (𝑁𝑥))
3020simprbi 480 . . . . . . . . . . 11 (𝑦𝑆𝐷 ∥ (𝑁𝑦))
3129, 30anim12i 590 . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → (𝐷 ∥ (𝑁𝑥) ∧ 𝐷 ∥ (𝑁𝑦)))
32 dvds2sub 15016 . . . . . . . . . . 11 ((𝐷 ∈ ℤ ∧ (𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ) → ((𝐷 ∥ (𝑁𝑥) ∧ 𝐷 ∥ (𝑁𝑦)) → 𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦))))
333, 32mp3an1 1411 . . . . . . . . . 10 (((𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ) → ((𝐷 ∥ (𝑁𝑥) ∧ 𝐷 ∥ (𝑁𝑦)) → 𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦))))
3428, 31, 33sylc 65 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆) → 𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦)))
35 zcn 11382 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
36 zcn 11382 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
372zrei 11383 . . . . . . . . . . . . . . . . 17 𝑁 ∈ ℝ
3837recni 10052 . . . . . . . . . . . . . . . 16 𝑁 ∈ ℂ
3938subidi 10352 . . . . . . . . . . . . . . 15 (𝑁𝑁) = 0
4039oveq1i 6660 . . . . . . . . . . . . . 14 ((𝑁𝑁) − (𝑥𝑦)) = (0 − (𝑥𝑦))
41 0cn 10032 . . . . . . . . . . . . . . 15 0 ∈ ℂ
42 subsub2 10309 . . . . . . . . . . . . . . 15 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 − (𝑥𝑦)) = (0 + (𝑦𝑥)))
4341, 42mp3an1 1411 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 − (𝑥𝑦)) = (0 + (𝑦𝑥)))
4440, 43syl5eq 2668 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁𝑁) − (𝑥𝑦)) = (0 + (𝑦𝑥)))
45 sub4 10326 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑁𝑁) − (𝑥𝑦)) = ((𝑁𝑥) − (𝑁𝑦)))
4638, 38, 45mpanl12 718 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁𝑁) − (𝑥𝑦)) = ((𝑁𝑥) − (𝑁𝑦)))
47 subcl 10280 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦𝑥) ∈ ℂ)
4847ancoms 469 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦𝑥) ∈ ℂ)
4948addid2d 10237 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 + (𝑦𝑥)) = (𝑦𝑥))
5044, 46, 493eqtr3d 2664 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁𝑥) − (𝑁𝑦)) = (𝑦𝑥))
5135, 36, 50syl2an 494 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑁𝑥) − (𝑁𝑦)) = (𝑦𝑥))
5217, 22, 51syl2an 494 . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → ((𝑁𝑥) − (𝑁𝑦)) = (𝑦𝑥))
5352breq2d 4665 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆) → (𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦)) ↔ 𝐷 ∥ (𝑦𝑥)))
5434, 53mpbid 222 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → 𝐷 ∥ (𝑦𝑥))
55 zsubcl 11419 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥) ∈ ℤ)
5655ancoms 469 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑦𝑥) ∈ ℤ)
57 absdvdsb 15000 . . . . . . . . . 10 ((𝐷 ∈ ℤ ∧ (𝑦𝑥) ∈ ℤ) → (𝐷 ∥ (𝑦𝑥) ↔ (abs‘𝐷) ∥ (𝑦𝑥)))
583, 56, 57sylancr 695 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐷 ∥ (𝑦𝑥) ↔ (abs‘𝐷) ∥ (𝑦𝑥)))
5917, 22, 58syl2an 494 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → (𝐷 ∥ (𝑦𝑥) ↔ (abs‘𝐷) ∥ (𝑦𝑥)))
6054, 59mpbid 222 . . . . . . 7 ((𝑥𝑆𝑦𝑆) → (abs‘𝐷) ∥ (𝑦𝑥))
61 nnabscl 14065 . . . . . . . . . . 11 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
623, 4, 61mp2an 708 . . . . . . . . . 10 (abs‘𝐷) ∈ ℕ
6362nnzi 11401 . . . . . . . . 9 (abs‘𝐷) ∈ ℤ
64 divides 14985 . . . . . . . . 9 (((abs‘𝐷) ∈ ℤ ∧ (𝑦𝑥) ∈ ℤ) → ((abs‘𝐷) ∥ (𝑦𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥)))
6563, 56, 64sylancr 695 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((abs‘𝐷) ∥ (𝑦𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥)))
6617, 22, 65syl2an 494 . . . . . . 7 ((𝑥𝑆𝑦𝑆) → ((abs‘𝐷) ∥ (𝑦𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥)))
6760, 66mpbid 222 . . . . . 6 ((𝑥𝑆𝑦𝑆) → ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥))
6867adantr 481 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥))
692, 3, 4, 5divalglem8 15123 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → (𝑘 ∈ ℤ → ((𝑘 · (abs‘𝐷)) = (𝑦𝑥) → 𝑥 = 𝑦)))
7069rexlimdv 3030 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → (∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥) → 𝑥 = 𝑦))
7168, 70mpd 15 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → 𝑥 = 𝑦)
7271ex 450 . . 3 ((𝑥𝑆𝑦𝑆) → ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦))
7372rgen2a 2977 . 2 𝑥𝑆𝑦𝑆 ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦)
74 breq1 4656 . . 3 (𝑥 = 𝑦 → (𝑥 < (abs‘𝐷) ↔ 𝑦 < (abs‘𝐷)))
7574reu4 3400 . 2 (∃!𝑥𝑆 𝑥 < (abs‘𝐷) ↔ (∃𝑥𝑆 𝑥 < (abs‘𝐷) ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦)))
7612, 73, 75mpbir2an 955 1 ∃!𝑥𝑆 𝑥 < (abs‘𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  ∃!wreu 2914  {crab 2916   class class class wbr 4653  cfv 5888  (class class class)co 6650  infcinf 8347  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  cz 11377  abscabs 13974  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984
This theorem is referenced by:  divalglem10  15125
  Copyright terms: Public domain W3C validator