| Step | Hyp | Ref
| Expression |
| 1 | | divalglem0.2 |
. . . . . 6
⊢ 𝐷 ∈ ℤ |
| 2 | | divalglem0.1 |
. . . . . . 7
⊢ 𝑁 ∈ ℤ |
| 3 | | nn0z 11400 |
. . . . . . 7
⊢ (𝑧 ∈ ℕ0
→ 𝑧 ∈
ℤ) |
| 4 | | zsubcl 11419 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑁 − 𝑧) ∈ ℤ) |
| 5 | 2, 3, 4 | sylancr 695 |
. . . . . 6
⊢ (𝑧 ∈ ℕ0
→ (𝑁 − 𝑧) ∈
ℤ) |
| 6 | | divides 14985 |
. . . . . 6
⊢ ((𝐷 ∈ ℤ ∧ (𝑁 − 𝑧) ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁 − 𝑧))) |
| 7 | 1, 5, 6 | sylancr 695 |
. . . . 5
⊢ (𝑧 ∈ ℕ0
→ (𝐷 ∥ (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁 − 𝑧))) |
| 8 | | nn0cn 11302 |
. . . . . . . 8
⊢ (𝑧 ∈ ℕ0
→ 𝑧 ∈
ℂ) |
| 9 | | zmulcl 11426 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℤ) |
| 10 | 1, 9 | mpan2 707 |
. . . . . . . . 9
⊢ (𝑞 ∈ ℤ → (𝑞 · 𝐷) ∈ ℤ) |
| 11 | 10 | zcnd 11483 |
. . . . . . . 8
⊢ (𝑞 ∈ ℤ → (𝑞 · 𝐷) ∈ ℂ) |
| 12 | | zcn 11382 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
| 13 | 2, 12 | ax-mp 5 |
. . . . . . . . . 10
⊢ 𝑁 ∈ ℂ |
| 14 | | subadd 10284 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ (𝑧 + (𝑞 · 𝐷)) = 𝑁)) |
| 15 | 13, 14 | mp3an1 1411 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ (𝑧 + (𝑞 · 𝐷)) = 𝑁)) |
| 16 | | addcom 10222 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → (𝑧 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑧)) |
| 17 | 16 | eqeq1d 2624 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑧 + (𝑞 · 𝐷)) = 𝑁 ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁)) |
| 18 | 15, 17 | bitrd 268 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁)) |
| 19 | 8, 11, 18 | syl2an 494 |
. . . . . . 7
⊢ ((𝑧 ∈ ℕ0
∧ 𝑞 ∈ ℤ)
→ ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁)) |
| 20 | | eqcom 2629 |
. . . . . . 7
⊢ ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ (𝑞 · 𝐷) = (𝑁 − 𝑧)) |
| 21 | | eqcom 2629 |
. . . . . . 7
⊢ (((𝑞 · 𝐷) + 𝑧) = 𝑁 ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧)) |
| 22 | 19, 20, 21 | 3bitr3g 302 |
. . . . . 6
⊢ ((𝑧 ∈ ℕ0
∧ 𝑞 ∈ ℤ)
→ ((𝑞 · 𝐷) = (𝑁 − 𝑧) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 23 | 22 | rexbidva 3049 |
. . . . 5
⊢ (𝑧 ∈ ℕ0
→ (∃𝑞 ∈
ℤ (𝑞 · 𝐷) = (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 24 | 7, 23 | bitrd 268 |
. . . 4
⊢ (𝑧 ∈ ℕ0
→ (𝐷 ∥ (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 25 | 24 | pm5.32i 669 |
. . 3
⊢ ((𝑧 ∈ ℕ0
∧ 𝐷 ∥ (𝑁 − 𝑧)) ↔ (𝑧 ∈ ℕ0 ∧
∃𝑞 ∈ ℤ
𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 26 | | oveq2 6658 |
. . . . 5
⊢ (𝑟 = 𝑧 → (𝑁 − 𝑟) = (𝑁 − 𝑧)) |
| 27 | 26 | breq2d 4665 |
. . . 4
⊢ (𝑟 = 𝑧 → (𝐷 ∥ (𝑁 − 𝑟) ↔ 𝐷 ∥ (𝑁 − 𝑧))) |
| 28 | | divalglem2.4 |
. . . 4
⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} |
| 29 | 27, 28 | elrab2 3366 |
. . 3
⊢ (𝑧 ∈ 𝑆 ↔ (𝑧 ∈ ℕ0 ∧ 𝐷 ∥ (𝑁 − 𝑧))) |
| 30 | | oveq2 6658 |
. . . . . 6
⊢ (𝑟 = 𝑧 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑧)) |
| 31 | 30 | eqeq2d 2632 |
. . . . 5
⊢ (𝑟 = 𝑧 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 32 | 31 | rexbidv 3052 |
. . . 4
⊢ (𝑟 = 𝑧 → (∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 33 | 32 | elrab 3363 |
. . 3
⊢ (𝑧 ∈ {𝑟 ∈ ℕ0 ∣
∃𝑞 ∈ ℤ
𝑁 = ((𝑞 · 𝐷) + 𝑟)} ↔ (𝑧 ∈ ℕ0 ∧
∃𝑞 ∈ ℤ
𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 34 | 25, 29, 33 | 3bitr4i 292 |
. 2
⊢ (𝑧 ∈ 𝑆 ↔ 𝑧 ∈ {𝑟 ∈ ℕ0 ∣
∃𝑞 ∈ ℤ
𝑁 = ((𝑞 · 𝐷) + 𝑟)}) |
| 35 | 34 | eqriv 2619 |
1
⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣
∃𝑞 ∈ ℤ
𝑁 = ((𝑞 · 𝐷) + 𝑟)} |