MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmfi Structured version   Visualization version   GIF version

Theorem dsmmfi 20082
Description: For finite products, the direct sum is just the module product. See also the observation in [Lang] p. 129. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
dsmmfi ((𝑅 Fn 𝐼𝐼 ∈ Fin) → (𝑆m 𝑅) = (𝑆Xs𝑅))

Proof of Theorem dsmmfi
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 (Base‘(𝑆m 𝑅)) = (Base‘(𝑆m 𝑅))
21dsmmval2 20080 . 2 (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅)))
3 eqid 2622 . . . . . . . . . . 11 (𝑆Xs𝑅) = (𝑆Xs𝑅)
4 eqid 2622 . . . . . . . . . . 11 (Base‘(𝑆Xs𝑅)) = (Base‘(𝑆Xs𝑅))
5 noel 3919 . . . . . . . . . . . . . 14 ¬ 𝑓 ∈ ∅
6 reldmprds 16109 . . . . . . . . . . . . . . . . . 18 Rel dom Xs
76ovprc1 6684 . . . . . . . . . . . . . . . . 17 𝑆 ∈ V → (𝑆Xs𝑅) = ∅)
87fveq2d 6195 . . . . . . . . . . . . . . . 16 𝑆 ∈ V → (Base‘(𝑆Xs𝑅)) = (Base‘∅))
9 base0 15912 . . . . . . . . . . . . . . . 16 ∅ = (Base‘∅)
108, 9syl6eqr 2674 . . . . . . . . . . . . . . 15 𝑆 ∈ V → (Base‘(𝑆Xs𝑅)) = ∅)
1110eleq2d 2687 . . . . . . . . . . . . . 14 𝑆 ∈ V → (𝑓 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑓 ∈ ∅))
125, 11mtbiri 317 . . . . . . . . . . . . 13 𝑆 ∈ V → ¬ 𝑓 ∈ (Base‘(𝑆Xs𝑅)))
1312con4i 113 . . . . . . . . . . . 12 (𝑓 ∈ (Base‘(𝑆Xs𝑅)) → 𝑆 ∈ V)
1413adantl 482 . . . . . . . . . . 11 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑆 ∈ V)
15 simplr 792 . . . . . . . . . . 11 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝐼 ∈ Fin)
16 simpll 790 . . . . . . . . . . 11 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑅 Fn 𝐼)
17 simpr 477 . . . . . . . . . . 11 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 ∈ (Base‘(𝑆Xs𝑅)))
183, 4, 14, 15, 16, 17prdsbasfn 16131 . . . . . . . . . 10 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 Fn 𝐼)
19 fndm 5990 . . . . . . . . . 10 (𝑓 Fn 𝐼 → dom 𝑓 = 𝐼)
2018, 19syl 17 . . . . . . . . 9 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom 𝑓 = 𝐼)
2120, 15eqeltrd 2701 . . . . . . . 8 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom 𝑓 ∈ Fin)
22 difss 3737 . . . . . . . . 9 (𝑓 ∖ (0g𝑅)) ⊆ 𝑓
23 dmss 5323 . . . . . . . . 9 ((𝑓 ∖ (0g𝑅)) ⊆ 𝑓 → dom (𝑓 ∖ (0g𝑅)) ⊆ dom 𝑓)
2422, 23ax-mp 5 . . . . . . . 8 dom (𝑓 ∖ (0g𝑅)) ⊆ dom 𝑓
25 ssfi 8180 . . . . . . . 8 ((dom 𝑓 ∈ Fin ∧ dom (𝑓 ∖ (0g𝑅)) ⊆ dom 𝑓) → dom (𝑓 ∖ (0g𝑅)) ∈ Fin)
2621, 24, 25sylancl 694 . . . . . . 7 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom (𝑓 ∖ (0g𝑅)) ∈ Fin)
2726ralrimiva 2966 . . . . . 6 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → ∀𝑓 ∈ (Base‘(𝑆Xs𝑅))dom (𝑓 ∖ (0g𝑅)) ∈ Fin)
28 rabid2 3118 . . . . . 6 ((Base‘(𝑆Xs𝑅)) = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} ↔ ∀𝑓 ∈ (Base‘(𝑆Xs𝑅))dom (𝑓 ∖ (0g𝑅)) ∈ Fin)
2927, 28sylibr 224 . . . . 5 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → (Base‘(𝑆Xs𝑅)) = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin})
30 eqid 2622 . . . . . 6 {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin}
313, 30dsmmbas2 20081 . . . . 5 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = (Base‘(𝑆m 𝑅)))
3229, 31eqtr2d 2657 . . . 4 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → (Base‘(𝑆m 𝑅)) = (Base‘(𝑆Xs𝑅)))
3332oveq2d 6666 . . 3 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅))) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆Xs𝑅))))
34 ovex 6678 . . . 4 (𝑆Xs𝑅) ∈ V
354ressid 15935 . . . 4 ((𝑆Xs𝑅) ∈ V → ((𝑆Xs𝑅) ↾s (Base‘(𝑆Xs𝑅))) = (𝑆Xs𝑅))
3634, 35ax-mp 5 . . 3 ((𝑆Xs𝑅) ↾s (Base‘(𝑆Xs𝑅))) = (𝑆Xs𝑅)
3733, 36syl6eq 2672 . 2 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅))) = (𝑆Xs𝑅))
382, 37syl5eq 2668 1 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → (𝑆m 𝑅) = (𝑆Xs𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  c0 3915  dom cdm 5114  ccom 5118   Fn wfn 5883  cfv 5888  (class class class)co 6650  Fincfn 7955  Basecbs 15857  s cress 15858  0gc0g 16100  Xscprds 16106  m cdsmm 20075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-dsmm 20076
This theorem is referenced by:  frlmpwsfi  20096
  Copyright terms: Public domain W3C validator