MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efnnfsumcl Structured version   Visualization version   GIF version

Theorem efnnfsumcl 24829
Description: Finite sum closure in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.)
Hypotheses
Ref Expression
efnnfsumcl.1 (𝜑𝐴 ∈ Fin)
efnnfsumcl.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
efnnfsumcl.3 ((𝜑𝑘𝐴) → (exp‘𝐵) ∈ ℕ)
Assertion
Ref Expression
efnnfsumcl (𝜑 → (exp‘Σ𝑘𝐴 𝐵) ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem efnnfsumcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . . . 5 {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℝ
2 ax-resscn 9993 . . . . 5 ℝ ⊆ ℂ
31, 2sstri 3612 . . . 4 {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℂ
43a1i 11 . . 3 (𝜑 → {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℂ)
5 fveq2 6191 . . . . . . 7 (𝑥 = 𝑦 → (exp‘𝑥) = (exp‘𝑦))
65eleq1d 2686 . . . . . 6 (𝑥 = 𝑦 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝑦) ∈ ℕ))
76elrab 3363 . . . . 5 (𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ))
8 fveq2 6191 . . . . . . 7 (𝑥 = 𝑧 → (exp‘𝑥) = (exp‘𝑧))
98eleq1d 2686 . . . . . 6 (𝑥 = 𝑧 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝑧) ∈ ℕ))
109elrab 3363 . . . . 5 (𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ))
11 simpll 790 . . . . . . 7 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑦 ∈ ℝ)
12 simprl 794 . . . . . . 7 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑧 ∈ ℝ)
1311, 12readdcld 10069 . . . . . 6 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (𝑦 + 𝑧) ∈ ℝ)
1411recnd 10068 . . . . . . . 8 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑦 ∈ ℂ)
1512recnd 10068 . . . . . . . 8 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑧 ∈ ℂ)
16 efadd 14824 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑦 + 𝑧)) = ((exp‘𝑦) · (exp‘𝑧)))
1714, 15, 16syl2anc 693 . . . . . . 7 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (exp‘(𝑦 + 𝑧)) = ((exp‘𝑦) · (exp‘𝑧)))
18 nnmulcl 11043 . . . . . . . 8 (((exp‘𝑦) ∈ ℕ ∧ (exp‘𝑧) ∈ ℕ) → ((exp‘𝑦) · (exp‘𝑧)) ∈ ℕ)
1918ad2ant2l 782 . . . . . . 7 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → ((exp‘𝑦) · (exp‘𝑧)) ∈ ℕ)
2017, 19eqeltrd 2701 . . . . . 6 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (exp‘(𝑦 + 𝑧)) ∈ ℕ)
21 fveq2 6191 . . . . . . . 8 (𝑥 = (𝑦 + 𝑧) → (exp‘𝑥) = (exp‘(𝑦 + 𝑧)))
2221eleq1d 2686 . . . . . . 7 (𝑥 = (𝑦 + 𝑧) → ((exp‘𝑥) ∈ ℕ ↔ (exp‘(𝑦 + 𝑧)) ∈ ℕ))
2322elrab 3363 . . . . . 6 ((𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ ((𝑦 + 𝑧) ∈ ℝ ∧ (exp‘(𝑦 + 𝑧)) ∈ ℕ))
2413, 20, 23sylanbrc 698 . . . . 5 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
257, 10, 24syl2anb 496 . . . 4 ((𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ∧ 𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ}) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
2625adantl 482 . . 3 ((𝜑 ∧ (𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ∧ 𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
27 efnnfsumcl.1 . . 3 (𝜑𝐴 ∈ Fin)
28 efnnfsumcl.2 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
29 efnnfsumcl.3 . . . 4 ((𝜑𝑘𝐴) → (exp‘𝐵) ∈ ℕ)
30 fveq2 6191 . . . . . 6 (𝑥 = 𝐵 → (exp‘𝑥) = (exp‘𝐵))
3130eleq1d 2686 . . . . 5 (𝑥 = 𝐵 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝐵) ∈ ℕ))
3231elrab 3363 . . . 4 (𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝐵 ∈ ℝ ∧ (exp‘𝐵) ∈ ℕ))
3328, 29, 32sylanbrc 698 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
34 0re 10040 . . . . 5 0 ∈ ℝ
35 1nn 11031 . . . . 5 1 ∈ ℕ
36 fveq2 6191 . . . . . . . 8 (𝑥 = 0 → (exp‘𝑥) = (exp‘0))
37 ef0 14821 . . . . . . . 8 (exp‘0) = 1
3836, 37syl6eq 2672 . . . . . . 7 (𝑥 = 0 → (exp‘𝑥) = 1)
3938eleq1d 2686 . . . . . 6 (𝑥 = 0 → ((exp‘𝑥) ∈ ℕ ↔ 1 ∈ ℕ))
4039elrab 3363 . . . . 5 (0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (0 ∈ ℝ ∧ 1 ∈ ℕ))
4134, 35, 40mpbir2an 955 . . . 4 0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ}
4241a1i 11 . . 3 (𝜑 → 0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
434, 26, 27, 33, 42fsumcllem 14463 . 2 (𝜑 → Σ𝑘𝐴 𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
44 fveq2 6191 . . . . 5 (𝑥 = Σ𝑘𝐴 𝐵 → (exp‘𝑥) = (exp‘Σ𝑘𝐴 𝐵))
4544eleq1d 2686 . . . 4 (𝑥 = Σ𝑘𝐴 𝐵 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘Σ𝑘𝐴 𝐵) ∈ ℕ))
4645elrab 3363 . . 3 𝑘𝐴 𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (Σ𝑘𝐴 𝐵 ∈ ℝ ∧ (exp‘Σ𝑘𝐴 𝐵) ∈ ℕ))
4746simprbi 480 . 2 𝑘𝐴 𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} → (exp‘Σ𝑘𝐴 𝐵) ∈ ℕ)
4843, 47syl 17 1 (𝜑 → (exp‘Σ𝑘𝐴 𝐵) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  wss 3574  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cn 11020  Σcsu 14416  expce 14792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798
This theorem is referenced by:  efchtcl  24837  efchpcl  24851
  Copyright terms: Public domain W3C validator