MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efnnfsumcl Structured version   Visualization version   Unicode version

Theorem efnnfsumcl 24829
Description: Finite sum closure in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.)
Hypotheses
Ref Expression
efnnfsumcl.1  |-  ( ph  ->  A  e.  Fin )
efnnfsumcl.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
efnnfsumcl.3  |-  ( (
ph  /\  k  e.  A )  ->  ( exp `  B )  e.  NN )
Assertion
Ref Expression
efnnfsumcl  |-  ( ph  ->  ( exp `  sum_ k  e.  A  B
)  e.  NN )
Distinct variable groups:    A, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem efnnfsumcl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . . . 5  |-  { x  e.  RR  |  ( exp `  x )  e.  NN }  C_  RR
2 ax-resscn 9993 . . . . 5  |-  RR  C_  CC
31, 2sstri 3612 . . . 4  |-  { x  e.  RR  |  ( exp `  x )  e.  NN }  C_  CC
43a1i 11 . . 3  |-  ( ph  ->  { x  e.  RR  |  ( exp `  x
)  e.  NN }  C_  CC )
5 fveq2 6191 . . . . . . 7  |-  ( x  =  y  ->  ( exp `  x )  =  ( exp `  y
) )
65eleq1d 2686 . . . . . 6  |-  ( x  =  y  ->  (
( exp `  x
)  e.  NN  <->  ( exp `  y )  e.  NN ) )
76elrab 3363 . . . . 5  |-  ( y  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } 
<->  ( y  e.  RR  /\  ( exp `  y
)  e.  NN ) )
8 fveq2 6191 . . . . . . 7  |-  ( x  =  z  ->  ( exp `  x )  =  ( exp `  z
) )
98eleq1d 2686 . . . . . 6  |-  ( x  =  z  ->  (
( exp `  x
)  e.  NN  <->  ( exp `  z )  e.  NN ) )
109elrab 3363 . . . . 5  |-  ( z  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } 
<->  ( z  e.  RR  /\  ( exp `  z
)  e.  NN ) )
11 simpll 790 . . . . . . 7  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  y  e.  RR )
12 simprl 794 . . . . . . 7  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  z  e.  RR )
1311, 12readdcld 10069 . . . . . 6  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  (
y  +  z )  e.  RR )
1411recnd 10068 . . . . . . . 8  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  y  e.  CC )
1512recnd 10068 . . . . . . . 8  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  z  e.  CC )
16 efadd 14824 . . . . . . . 8  |-  ( ( y  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
y  +  z ) )  =  ( ( exp `  y )  x.  ( exp `  z
) ) )
1714, 15, 16syl2anc 693 . . . . . . 7  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  ( exp `  ( y  +  z ) )  =  ( ( exp `  y
)  x.  ( exp `  z ) ) )
18 nnmulcl 11043 . . . . . . . 8  |-  ( ( ( exp `  y
)  e.  NN  /\  ( exp `  z )  e.  NN )  -> 
( ( exp `  y
)  x.  ( exp `  z ) )  e.  NN )
1918ad2ant2l 782 . . . . . . 7  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  (
( exp `  y
)  x.  ( exp `  z ) )  e.  NN )
2017, 19eqeltrd 2701 . . . . . 6  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  ( exp `  ( y  +  z ) )  e.  NN )
21 fveq2 6191 . . . . . . . 8  |-  ( x  =  ( y  +  z )  ->  ( exp `  x )  =  ( exp `  (
y  +  z ) ) )
2221eleq1d 2686 . . . . . . 7  |-  ( x  =  ( y  +  z )  ->  (
( exp `  x
)  e.  NN  <->  ( exp `  ( y  +  z ) )  e.  NN ) )
2322elrab 3363 . . . . . 6  |-  ( ( y  +  z )  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } 
<->  ( ( y  +  z )  e.  RR  /\  ( exp `  (
y  +  z ) )  e.  NN ) )
2413, 20, 23sylanbrc 698 . . . . 5  |-  ( ( ( y  e.  RR  /\  ( exp `  y
)  e.  NN )  /\  ( z  e.  RR  /\  ( exp `  z )  e.  NN ) )  ->  (
y  +  z )  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } )
257, 10, 24syl2anb 496 . . . 4  |-  ( ( y  e.  { x  e.  RR  |  ( exp `  x )  e.  NN }  /\  z  e.  {
x  e.  RR  | 
( exp `  x
)  e.  NN }
)  ->  ( y  +  z )  e. 
{ x  e.  RR  |  ( exp `  x
)  e.  NN }
)
2625adantl 482 . . 3  |-  ( (
ph  /\  ( y  e.  { x  e.  RR  |  ( exp `  x
)  e.  NN }  /\  z  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } ) )  -> 
( y  +  z )  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } )
27 efnnfsumcl.1 . . 3  |-  ( ph  ->  A  e.  Fin )
28 efnnfsumcl.2 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
29 efnnfsumcl.3 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  ( exp `  B )  e.  NN )
30 fveq2 6191 . . . . . 6  |-  ( x  =  B  ->  ( exp `  x )  =  ( exp `  B
) )
3130eleq1d 2686 . . . . 5  |-  ( x  =  B  ->  (
( exp `  x
)  e.  NN  <->  ( exp `  B )  e.  NN ) )
3231elrab 3363 . . . 4  |-  ( B  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } 
<->  ( B  e.  RR  /\  ( exp `  B
)  e.  NN ) )
3328, 29, 32sylanbrc 698 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  { x  e.  RR  |  ( exp `  x
)  e.  NN }
)
34 0re 10040 . . . . 5  |-  0  e.  RR
35 1nn 11031 . . . . 5  |-  1  e.  NN
36 fveq2 6191 . . . . . . . 8  |-  ( x  =  0  ->  ( exp `  x )  =  ( exp `  0
) )
37 ef0 14821 . . . . . . . 8  |-  ( exp `  0 )  =  1
3836, 37syl6eq 2672 . . . . . . 7  |-  ( x  =  0  ->  ( exp `  x )  =  1 )
3938eleq1d 2686 . . . . . 6  |-  ( x  =  0  ->  (
( exp `  x
)  e.  NN  <->  1  e.  NN ) )
4039elrab 3363 . . . . 5  |-  ( 0  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } 
<->  ( 0  e.  RR  /\  1  e.  NN ) )
4134, 35, 40mpbir2an 955 . . . 4  |-  0  e.  { x  e.  RR  |  ( exp `  x
)  e.  NN }
4241a1i 11 . . 3  |-  ( ph  ->  0  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } )
434, 26, 27, 33, 42fsumcllem 14463 . 2  |-  ( ph  -> 
sum_ k  e.  A  B  e.  { x  e.  RR  |  ( exp `  x )  e.  NN } )
44 fveq2 6191 . . . . 5  |-  ( x  =  sum_ k  e.  A  B  ->  ( exp `  x
)  =  ( exp `  sum_ k  e.  A  B ) )
4544eleq1d 2686 . . . 4  |-  ( x  =  sum_ k  e.  A  B  ->  ( ( exp `  x )  e.  NN  <->  ( exp `  sum_ k  e.  A  B )  e.  NN ) )
4645elrab 3363 . . 3  |-  ( sum_ k  e.  A  B  e.  { x  e.  RR  |  ( exp `  x
)  e.  NN }  <->  (
sum_ k  e.  A  B  e.  RR  /\  ( exp `  sum_ k  e.  A  B )  e.  NN ) )
4746simprbi 480 . 2  |-  ( sum_ k  e.  A  B  e.  { x  e.  RR  |  ( exp `  x
)  e.  NN }  ->  ( exp `  sum_ k  e.  A  B
)  e.  NN )
4843, 47syl 17 1  |-  ( ph  ->  ( exp `  sum_ k  e.  A  B
)  e.  NN )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NNcn 11020   sum_csu 14416   expce 14792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798
This theorem is referenced by:  efchtcl  24837  efchpcl  24851
  Copyright terms: Public domain W3C validator