![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldioph4i | Structured version Visualization version GIF version |
Description: Forward-only version of eldioph4b 37375. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
eldioph4b.a | ⊢ 𝑊 ∈ V |
eldioph4b.b | ⊢ ¬ 𝑊 ∈ Fin |
eldioph4b.c | ⊢ (𝑊 ∩ ℕ) = ∅ |
Ref | Expression |
---|---|
eldioph4i | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 3760 | . . . . . . . . 9 ⊢ (𝑡 = 𝑎 → (𝑡 ∪ 𝑤) = (𝑎 ∪ 𝑤)) | |
2 | 1 | fveq2d 6195 | . . . . . . . 8 ⊢ (𝑡 = 𝑎 → (𝑃‘(𝑡 ∪ 𝑤)) = (𝑃‘(𝑎 ∪ 𝑤))) |
3 | 2 | eqeq1d 2624 | . . . . . . 7 ⊢ (𝑡 = 𝑎 → ((𝑃‘(𝑡 ∪ 𝑤)) = 0 ↔ (𝑃‘(𝑎 ∪ 𝑤)) = 0)) |
4 | 3 | rexbidv 3052 | . . . . . 6 ⊢ (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0 ↔ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑤)) = 0)) |
5 | uneq2 3761 | . . . . . . . . 9 ⊢ (𝑤 = 𝑏 → (𝑎 ∪ 𝑤) = (𝑎 ∪ 𝑏)) | |
6 | 5 | fveq2d 6195 | . . . . . . . 8 ⊢ (𝑤 = 𝑏 → (𝑃‘(𝑎 ∪ 𝑤)) = (𝑃‘(𝑎 ∪ 𝑏))) |
7 | 6 | eqeq1d 2624 | . . . . . . 7 ⊢ (𝑤 = 𝑏 → ((𝑃‘(𝑎 ∪ 𝑤)) = 0 ↔ (𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
8 | 7 | cbvrexv 3172 | . . . . . 6 ⊢ (∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0) |
9 | 4, 8 | syl6bb 276 | . . . . 5 ⊢ (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
10 | 9 | cbvrabv 3199 | . . . 4 ⊢ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0} |
11 | fveq1 6190 | . . . . . . . . 9 ⊢ (𝑝 = 𝑃 → (𝑝‘(𝑎 ∪ 𝑏)) = (𝑃‘(𝑎 ∪ 𝑏))) | |
12 | 11 | eqeq1d 2624 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → ((𝑝‘(𝑎 ∪ 𝑏)) = 0 ↔ (𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
13 | 12 | rexbidv 3052 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → (∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0 ↔ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
14 | 13 | rabbidv 3189 | . . . . . 6 ⊢ (𝑝 = 𝑃 → {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0}) |
15 | 14 | eqeq2d 2632 | . . . . 5 ⊢ (𝑝 = 𝑃 → ({𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0} ↔ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0})) |
16 | 15 | rspcev 3309 | . . . 4 ⊢ ((𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0}) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0}) |
17 | 10, 16 | mpan2 707 | . . 3 ⊢ (𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0}) |
18 | 17 | anim2i 593 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0})) |
19 | eldioph4b.a | . . 3 ⊢ 𝑊 ∈ V | |
20 | eldioph4b.b | . . 3 ⊢ ¬ 𝑊 ∈ Fin | |
21 | eldioph4b.c | . . 3 ⊢ (𝑊 ∩ ℕ) = ∅ | |
22 | 19, 20, 21 | eldioph4b 37375 | . 2 ⊢ ({𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0})) |
23 | 18, 22 | sylibr 224 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 {crab 2916 Vcvv 3200 ∪ cun 3572 ∩ cin 3573 ∅c0 3915 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 Fincfn 7955 0cc0 9936 1c1 9937 ℕcn 11020 ℕ0cn0 11292 ...cfz 12326 mzPolycmzp 37285 Diophcdioph 37318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-hash 13118 df-mzpcl 37286 df-mzp 37287 df-dioph 37319 |
This theorem is referenced by: diophren 37377 |
Copyright terms: Public domain | W3C validator |