Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph4i Structured version   Visualization version   GIF version

Theorem eldioph4i 37376
Description: Forward-only version of eldioph4b 37375. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
eldioph4b.a 𝑊 ∈ V
eldioph4b.b ¬ 𝑊 ∈ Fin
eldioph4b.c (𝑊 ∩ ℕ) = ∅
Assertion
Ref Expression
eldioph4i ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑊,𝑤   𝑡,𝑁,𝑤   𝑡,𝑃,𝑤

Proof of Theorem eldioph4i
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3760 . . . . . . . . 9 (𝑡 = 𝑎 → (𝑡𝑤) = (𝑎𝑤))
21fveq2d 6195 . . . . . . . 8 (𝑡 = 𝑎 → (𝑃‘(𝑡𝑤)) = (𝑃‘(𝑎𝑤)))
32eqeq1d 2624 . . . . . . 7 (𝑡 = 𝑎 → ((𝑃‘(𝑡𝑤)) = 0 ↔ (𝑃‘(𝑎𝑤)) = 0))
43rexbidv 3052 . . . . . 6 (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0 ↔ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑤)) = 0))
5 uneq2 3761 . . . . . . . . 9 (𝑤 = 𝑏 → (𝑎𝑤) = (𝑎𝑏))
65fveq2d 6195 . . . . . . . 8 (𝑤 = 𝑏 → (𝑃‘(𝑎𝑤)) = (𝑃‘(𝑎𝑏)))
76eqeq1d 2624 . . . . . . 7 (𝑤 = 𝑏 → ((𝑃‘(𝑎𝑤)) = 0 ↔ (𝑃‘(𝑎𝑏)) = 0))
87cbvrexv 3172 . . . . . 6 (∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0)
94, 8syl6bb 276 . . . . 5 (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0))
109cbvrabv 3199 . . . 4 {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0}
11 fveq1 6190 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝‘(𝑎𝑏)) = (𝑃‘(𝑎𝑏)))
1211eqeq1d 2624 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝‘(𝑎𝑏)) = 0 ↔ (𝑃‘(𝑎𝑏)) = 0))
1312rexbidv 3052 . . . . . . 7 (𝑝 = 𝑃 → (∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0 ↔ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0))
1413rabbidv 3189 . . . . . 6 (𝑝 = 𝑃 → {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0})
1514eqeq2d 2632 . . . . 5 (𝑝 = 𝑃 → ({𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0} ↔ {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0}))
1615rspcev 3309 . . . 4 ((𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0}) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0})
1710, 16mpan2 707 . . 3 (𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0})
1817anim2i 593 . 2 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0}))
19 eldioph4b.a . . 3 𝑊 ∈ V
20 eldioph4b.b . . 3 ¬ 𝑊 ∈ Fin
21 eldioph4b.c . . 3 (𝑊 ∩ ℕ) = ∅
2219, 20, 21eldioph4b 37375 . 2 ({𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0}))
2318, 22sylibr 224 1 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  Vcvv 3200  cun 3572  cin 3573  c0 3915  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  0cc0 9936  1c1 9937  cn 11020  0cn0 11292  ...cfz 12326  mzPolycmzp 37285  Diophcdioph 37318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-mzpcl 37286  df-mzp 37287  df-dioph 37319
This theorem is referenced by:  diophren  37377
  Copyright terms: Public domain W3C validator