MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elply2 Structured version   Visualization version   GIF version

Theorem elply2 23952
Description: The coefficient function can be assumed to have zeroes outside 0...𝑛. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
elply2 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
Distinct variable groups:   𝑘,𝑎,𝑛,𝑧,𝑆   𝐹,𝑎,𝑛
Allowed substitution hints:   𝐹(𝑧,𝑘)

Proof of Theorem elply2
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 23951 . . 3 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘)))))
2 simpr 477 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
3 simpll 790 . . . . . . . . . . . . . . . 16 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → 𝑆 ⊆ ℂ)
4 cnex 10017 . . . . . . . . . . . . . . . 16 ℂ ∈ V
5 ssexg 4804 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
63, 4, 5sylancl 694 . . . . . . . . . . . . . . 15 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → 𝑆 ∈ V)
7 snex 4908 . . . . . . . . . . . . . . 15 {0} ∈ V
8 unexg 6959 . . . . . . . . . . . . . . 15 ((𝑆 ∈ V ∧ {0} ∈ V) → (𝑆 ∪ {0}) ∈ V)
96, 7, 8sylancl 694 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → (𝑆 ∪ {0}) ∈ V)
10 nn0ex 11298 . . . . . . . . . . . . . 14 0 ∈ V
11 elmapg 7870 . . . . . . . . . . . . . 14 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑓:ℕ0⟶(𝑆 ∪ {0})))
129, 10, 11sylancl 694 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → (𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑓:ℕ0⟶(𝑆 ∪ {0})))
132, 12mpbid 222 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → 𝑓:ℕ0⟶(𝑆 ∪ {0}))
1413ffvelrnda 6359 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ 𝑥 ∈ ℕ0) → (𝑓𝑥) ∈ (𝑆 ∪ {0}))
15 ssun2 3777 . . . . . . . . . . . 12 {0} ⊆ (𝑆 ∪ {0})
16 c0ex 10034 . . . . . . . . . . . . 13 0 ∈ V
1716snss 4316 . . . . . . . . . . . 12 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
1815, 17mpbir 221 . . . . . . . . . . 11 0 ∈ (𝑆 ∪ {0})
19 ifcl 4130 . . . . . . . . . . 11 (((𝑓𝑥) ∈ (𝑆 ∪ {0}) ∧ 0 ∈ (𝑆 ∪ {0})) → if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0) ∈ (𝑆 ∪ {0}))
2014, 18, 19sylancl 694 . . . . . . . . . 10 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ 𝑥 ∈ ℕ0) → if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0) ∈ (𝑆 ∪ {0}))
21 eqid 2622 . . . . . . . . . 10 (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))
2220, 21fmptd 6385 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶(𝑆 ∪ {0}))
23 elmapg 7870 . . . . . . . . . 10 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶(𝑆 ∪ {0})))
249, 10, 23sylancl 694 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶(𝑆 ∪ {0})))
2522, 24mpbird 247 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑𝑚0))
26 eleq1 2689 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝑥 ∈ (0...𝑛) ↔ 𝑘 ∈ (0...𝑛)))
27 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝑓𝑥) = (𝑓𝑘))
2826, 27ifbieq1d 4109 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0))
29 fvex 6201 . . . . . . . . . . . . . . . . 17 (𝑓𝑘) ∈ V
3029, 16ifex 4156 . . . . . . . . . . . . . . . 16 if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0) ∈ V
3128, 21, 30fvmpt 6282 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0))
3231ad2antll 765 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑘 ∈ ℕ0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0))
33 iffalse 4095 . . . . . . . . . . . . . . 15 𝑘 ∈ (0...𝑛) → if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0) = 0)
3433eqeq2d 2632 . . . . . . . . . . . . . 14 𝑘 ∈ (0...𝑛) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0) ↔ ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = 0))
3532, 34syl5ibcom 235 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑘 ∈ ℕ0)) → (¬ 𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = 0))
3635necon1ad 2811 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑘 ∈ ℕ0)) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑛)))
37 elfzle2 12345 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑛) → 𝑘𝑛)
3836, 37syl6 35 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑘 ∈ ℕ0)) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘𝑛))
3938anassrs 680 . . . . . . . . . 10 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ 𝑘 ∈ ℕ0) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘𝑛))
4039ralrimiva 2966 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → ∀𝑘 ∈ ℕ0 (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘𝑛))
41 simplr 792 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → 𝑛 ∈ ℕ0)
42 0cnd 10033 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → 0 ∈ ℂ)
4342snssd 4340 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → {0} ⊆ ℂ)
443, 43unssd 3789 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → (𝑆 ∪ {0}) ⊆ ℂ)
4522, 44fssd 6057 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶ℂ)
46 plyco0 23948 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶ℂ) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘𝑛)))
4741, 45, 46syl2anc 693 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘𝑛)))
4840, 47mpbird 247 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0})
49 eqidd 2623 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))))
50 imaeq1 5461 . . . . . . . . . . 11 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → (𝑎 “ (ℤ‘(𝑛 + 1))) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))))
5150eqeq1d 2624 . . . . . . . . . 10 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ↔ ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0}))
52 fveq1 6190 . . . . . . . . . . . . . . 15 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → (𝑎𝑘) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘))
53 elfznn0 12433 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
5453, 31syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0))
55 iftrue 4092 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...𝑛) → if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0) = (𝑓𝑘))
5654, 55eqtrd 2656 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = (𝑓𝑘))
5752, 56sylan9eq 2676 . . . . . . . . . . . . . 14 ((𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) = (𝑓𝑘))
5857oveq1d 6665 . . . . . . . . . . . . 13 ((𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝑧𝑘)) = ((𝑓𝑘) · (𝑧𝑘)))
5958sumeq2dv 14433 . . . . . . . . . . . 12 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘)))
6059mpteq2dv 4745 . . . . . . . . . . 11 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))))
6160eqeq2d 2632 . . . . . . . . . 10 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘)))))
6251, 61anbi12d 747 . . . . . . . . 9 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))))))
6362rspcev 3309 . . . . . . . 8 (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
6425, 48, 49, 63syl12anc 1324 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
65 eqeq1 2626 . . . . . . . . 9 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
6665anbi2d 740 . . . . . . . 8 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
6766rexbidv 3052 . . . . . . 7 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
6864, 67syl5ibrcom 237 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
6968rexlimdva 3031 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) → (∃𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
7069reximdva 3017 . . . 4 (𝑆 ⊆ ℂ → (∃𝑛 ∈ ℕ0𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
7170imdistani 726 . . 3 ((𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘)))) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
721, 71sylbi 207 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
73 simpr 477 . . . . . 6 (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
7473reximi 3011 . . . . 5 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
7574reximi 3011 . . . 4 (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
7675anim2i 593 . . 3 ((𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
77 elply 23951 . . 3 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
7876, 77sylibr 224 . 2 ((𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → 𝐹 ∈ (Poly‘𝑆))
7972, 78impbii 199 1 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cun 3572  wss 3574  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  0cn0 11292  cuz 11687  ...cfz 12326  cexp 12860  Σcsu 14416  Polycply 23940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-sum 14417  df-ply 23944
This theorem is referenced by:  plyadd  23973  plymul  23974  coeeu  23981  dgrlem  23985  coeid  23994
  Copyright terms: Public domain W3C validator