MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elply2 Structured version   Visualization version   Unicode version

Theorem elply2 23952
Description: The coefficient function can be assumed to have zeroes outside  0 ... n. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
elply2  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
Distinct variable groups:    k, a, n, z, S    F, a, n
Allowed substitution hints:    F( z, k)

Proof of Theorem elply2
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 23951 . . 3  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. f  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) ) ) )
2 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  f  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
3 simpll 790 . . . . . . . . . . . . . . . 16  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  S  C_  CC )
4 cnex 10017 . . . . . . . . . . . . . . . 16  |-  CC  e.  _V
5 ssexg 4804 . . . . . . . . . . . . . . . 16  |-  ( ( S  C_  CC  /\  CC  e.  _V )  ->  S  e.  _V )
63, 4, 5sylancl 694 . . . . . . . . . . . . . . 15  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  S  e.  _V )
7 snex 4908 . . . . . . . . . . . . . . 15  |-  { 0 }  e.  _V
8 unexg 6959 . . . . . . . . . . . . . . 15  |-  ( ( S  e.  _V  /\  { 0 }  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
96, 7, 8sylancl 694 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  ( S  u.  { 0 } )  e.  _V )
10 nn0ex 11298 . . . . . . . . . . . . . 14  |-  NN0  e.  _V
11 elmapg 7870 . . . . . . . . . . . . . 14  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( f  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  f : NN0 --> ( S  u.  { 0 } ) ) )
129, 10, 11sylancl 694 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  (
f  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) 
<->  f : NN0 --> ( S  u.  { 0 } ) ) )
132, 12mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  f : NN0 --> ( S  u.  { 0 } ) )
1413ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) )  /\  x  e.  NN0 )  ->  (
f `  x )  e.  ( S  u.  {
0 } ) )
15 ssun2 3777 . . . . . . . . . . . 12  |-  { 0 }  C_  ( S  u.  { 0 } )
16 c0ex 10034 . . . . . . . . . . . . 13  |-  0  e.  _V
1716snss 4316 . . . . . . . . . . . 12  |-  ( 0  e.  ( S  u.  { 0 } )  <->  { 0 }  C_  ( S  u.  { 0 } ) )
1815, 17mpbir 221 . . . . . . . . . . 11  |-  0  e.  ( S  u.  {
0 } )
19 ifcl 4130 . . . . . . . . . . 11  |-  ( ( ( f `  x
)  e.  ( S  u.  { 0 } )  /\  0  e.  ( S  u.  {
0 } ) )  ->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 )  e.  ( S  u.  {
0 } ) )
2014, 18, 19sylancl 694 . . . . . . . . . 10  |-  ( ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) )  /\  x  e.  NN0 )  ->  if ( x  e.  (
0 ... n ) ,  ( f `  x
) ,  0 )  e.  ( S  u.  { 0 } ) )
21 eqid 2622 . . . . . . . . . 10  |-  ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) )  =  ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) )
2220, 21fmptd 6385 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  (
x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) : NN0 --> ( S  u.  { 0 } ) )
23 elmapg 7870 . . . . . . . . . 10  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) )  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) 
<->  ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) : NN0 --> ( S  u.  { 0 } ) ) )
249, 10, 23sylancl 694 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  (
( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) : NN0 --> ( S  u.  { 0 } ) ) )
2522, 24mpbird 247 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  (
x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) )  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
26 eleq1 2689 . . . . . . . . . . . . . . . . 17  |-  ( x  =  k  ->  (
x  e.  ( 0 ... n )  <->  k  e.  ( 0 ... n
) ) )
27 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( x  =  k  ->  (
f `  x )  =  ( f `  k ) )
2826, 27ifbieq1d 4109 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  if ( x  e.  (
0 ... n ) ,  ( f `  x
) ,  0 )  =  if ( k  e.  ( 0 ... n ) ,  ( f `  k ) ,  0 ) )
29 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  ( f `
 k )  e. 
_V
3029, 16ifex 4156 . . . . . . . . . . . . . . . 16  |-  if ( k  e.  ( 0 ... n ) ,  ( f `  k
) ,  0 )  e.  _V
3128, 21, 30fvmpt 6282 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =  if ( k  e.  ( 0 ... n ) ,  ( f `  k ) ,  0 ) )
3231ad2antll 765 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  ( f  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  /\  k  e. 
NN0 ) )  -> 
( ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) `
 k )  =  if ( k  e.  ( 0 ... n
) ,  ( f `
 k ) ,  0 ) )
33 iffalse 4095 . . . . . . . . . . . . . . 15  |-  ( -.  k  e.  ( 0 ... n )  ->  if ( k  e.  ( 0 ... n ) ,  ( f `  k ) ,  0 )  =  0 )
3433eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( -.  k  e.  ( 0 ... n )  -> 
( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =  if ( k  e.  ( 0 ... n ) ,  ( f `  k ) ,  0 )  <->  ( (
x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =  0 ) )
3532, 34syl5ibcom 235 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  ( f  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  /\  k  e. 
NN0 ) )  -> 
( -.  k  e.  ( 0 ... n
)  ->  ( (
x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =  0 ) )
3635necon1ad 2811 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  ( f  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  /\  k  e. 
NN0 ) )  -> 
( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =/=  0  ->  k  e.  ( 0 ... n
) ) )
37 elfzle2 12345 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... n )  ->  k  <_  n )
3836, 37syl6 35 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  ( f  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  /\  k  e. 
NN0 ) )  -> 
( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =/=  0  ->  k  <_  n ) )
3938anassrs 680 . . . . . . . . . 10  |-  ( ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) )  /\  k  e.  NN0 )  ->  (
( ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) `
 k )  =/=  0  ->  k  <_  n ) )
4039ralrimiva 2966 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  A. k  e.  NN0  ( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =/=  0  ->  k  <_  n ) )
41 simplr 792 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  n  e.  NN0 )
42 0cnd 10033 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  0  e.  CC )
4342snssd 4340 . . . . . . . . . . . 12  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  { 0 }  C_  CC )
443, 43unssd 3789 . . . . . . . . . . 11  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  ( S  u.  { 0 } )  C_  CC )
4522, 44fssd 6057 . . . . . . . . . 10  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  (
x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) : NN0 --> CC )
46 plyco0 23948 . . . . . . . . . 10  |-  ( ( n  e.  NN0  /\  ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) : NN0 --> CC )  ->  ( (
( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  <->  A. k  e.  NN0  ( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =/=  0  ->  k  <_  n ) ) )
4741, 45, 46syl2anc 693 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  (
( ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  <->  A. k  e.  NN0  ( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) `  k )  =/=  0  ->  k  <_  n ) ) )
4840, 47mpbird 247 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  (
( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 } )
49 eqidd 2623 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( f `
 k )  x.  ( z ^ k
) ) ) )
50 imaeq1 5461 . . . . . . . . . . 11  |-  ( a  =  ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  ->  ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) " ( ZZ>= `  ( n  +  1
) ) ) )
5150eqeq1d 2624 . . . . . . . . . 10  |-  ( a  =  ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  ->  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  <->  ( (
x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 } ) )
52 fveq1 6190 . . . . . . . . . . . . . . 15  |-  ( a  =  ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  ->  ( a `  k )  =  ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) `  k
) )
53 elfznn0 12433 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
5453, 31syl 17 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 0 ... n )  ->  (
( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) `  k
)  =  if ( k  e.  ( 0 ... n ) ,  ( f `  k
) ,  0 ) )
55 iftrue 4092 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 0 ... n )  ->  if ( k  e.  ( 0 ... n ) ,  ( f `  k ) ,  0 )  =  ( f `
 k ) )
5654, 55eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... n )  ->  (
( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) `  k
)  =  ( f `
 k ) )
5752, 56sylan9eq 2676 . . . . . . . . . . . . . 14  |-  ( ( a  =  ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) )  /\  k  e.  ( 0 ... n
) )  ->  (
a `  k )  =  ( f `  k ) )
5857oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( a  =  ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) )  /\  k  e.  ( 0 ... n
) )  ->  (
( a `  k
)  x.  ( z ^ k ) )  =  ( ( f `
 k )  x.  ( z ^ k
) ) )
5958sumeq2dv 14433 . . . . . . . . . . . 12  |-  ( a  =  ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  ->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) )  =  sum_ k  e.  ( 0 ... n
) ( ( f `
 k )  x.  ( z ^ k
) ) )
6059mpteq2dv 4745 . . . . . . . . . . 11  |-  ( a  =  ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) ) )
6160eqeq2d 2632 . . . . . . . . . 10  |-  ( a  =  ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( f `
 k )  x.  ( z ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) ) ) )
6251, 61anbi12d 747 . . . . . . . . 9  |-  ( a  =  ( x  e. 
NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  ->  ( ( ( a " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 }  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) ) )  <-> 
( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x
) ,  0 ) ) " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 }  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( f `
 k )  x.  ( z ^ k
) ) ) ) ) )
6362rspcev 3309 . . . . . . . 8  |-  ( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) )  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  /\  ( ( ( x  e.  NN0  |->  if ( x  e.  ( 0 ... n ) ,  ( f `  x ) ,  0 ) ) " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) ) ) )  ->  E. a  e.  (
( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) ) ) )
6425, 48, 49, 63syl12anc 1324 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) ) ) )
65 eqeq1 2626 . . . . . . . . 9  |-  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k )  x.  (
z ^ k ) ) )  ->  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) )  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
6665anbi2d 740 . . . . . . . 8  |-  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k )  x.  (
z ^ k ) ) )  ->  (
( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  <->  ( (
a " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 }  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) ) ) ) )
6766rexbidv 3052 . . . . . . 7  |-  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k )  x.  (
z ^ k ) ) )  ->  ( E. a  e.  (
( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  <->  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) ) ) ) )
6864, 67syl5ibrcom 237 . . . . . 6  |-  ( ( ( S  C_  CC  /\  n  e.  NN0 )  /\  f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) )  ->  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k )  x.  (
z ^ k ) ) )  ->  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
6968rexlimdva 3031 . . . . 5  |-  ( ( S  C_  CC  /\  n  e.  NN0 )  ->  ( E. f  e.  (
( S  u.  {
0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  ->  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
7069reximdva 3017 . . . 4  |-  ( S 
C_  CC  ->  ( E. n  e.  NN0  E. f  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) )  ->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
7170imdistani 726 . . 3  |-  ( ( S  C_  CC  /\  E. n  e.  NN0  E. f  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( f `  k
)  x.  ( z ^ k ) ) ) )  ->  ( S  C_  CC  /\  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
721, 71sylbi 207 . 2  |-  ( F  e.  (Poly `  S
)  ->  ( S  C_  CC  /\  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
73 simpr 477 . . . . . 6  |-  ( ( ( a " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )
7473reximi 3011 . . . . 5  |-  ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  E. a  e.  (
( S  u.  {
0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
7574reximi 3011 . . . 4  |-  ( E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
7675anim2i 593 . . 3  |-  ( ( S  C_  CC  /\  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )  ->  ( S  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
77 elply 23951 . . 3  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
7876, 77sylibr 224 . 2  |-  ( ( S  C_  CC  /\  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )  ->  F  e.  (Poly `  S ) )
7972, 78impbii 199 1  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860   sum_csu 14416  Polycply 23940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-sum 14417  df-ply 23944
This theorem is referenced by:  plyadd  23973  plymul  23974  coeeu  23981  dgrlem  23985  coeid  23994
  Copyright terms: Public domain W3C validator