Proof of Theorem elwspths2spth
| Step | Hyp | Ref
| Expression |
| 1 | | 2nn0 11309 |
. . 3
⊢ 2 ∈
ℕ0 |
| 2 | | elwwlks2.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
| 3 | 2 | wspthsnwspthsnon 26811 |
. . 3
⊢ ((2
∈ ℕ0 ∧ 𝐺 ∈ UPGraph ) → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))) |
| 4 | 1, 3 | mpan 706 |
. 2
⊢ (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))) |
| 5 | 2 | elwspths2on 26853 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)))) |
| 6 | 5 | 3expb 1266 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)))) |
| 7 | 6 | 2rexbidva 3056 |
. 2
⊢ (𝐺 ∈ UPGraph →
(∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)))) |
| 8 | | rexcom 3099 |
. . . 4
⊢
(∃𝑐 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))) |
| 9 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ 𝑉) |
| 10 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → 𝑐 ∈ 𝑉) |
| 11 | 9, 10 | anim12i 590 |
. . . . . . . . 9
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) |
| 12 | 2 | wspthnon 26743 |
. . . . . . . . 9
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ (〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉))) |
| 13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ (〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉))) |
| 14 | 13 | adantr 481 |
. . . . . . 7
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑊 = 〈“𝑎𝑏𝑐”〉) → (〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ (〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉))) |
| 15 | | ancom 466 |
. . . . . . . . 9
⊢
((〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉) ↔ (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐))) |
| 16 | | 19.41v 1914 |
. . . . . . . . 9
⊢
(∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐))) |
| 17 | 15, 16 | bitr4i 267 |
. . . . . . . 8
⊢
((〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉) ↔ ∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐))) |
| 18 | | vex 3203 |
. . . . . . . . . . . . . 14
⊢ 𝑓 ∈ V |
| 19 | | s3cli 13626 |
. . . . . . . . . . . . . 14
⊢
〈“𝑎𝑏𝑐”〉 ∈ Word V |
| 20 | 18, 19 | pm3.2i 471 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ V ∧
〈“𝑎𝑏𝑐”〉 ∈ Word V) |
| 21 | 2 | isspthonpth 26645 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑓 ∈ V ∧ 〈“𝑎𝑏𝑐”〉 ∈ Word V)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ↔ (𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐))) |
| 22 | 11, 20, 21 | sylancl 694 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ↔ (𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐))) |
| 23 | 2 | wwlknon 26742 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ (〈“𝑎𝑏𝑐”〉 ∈ (2 WWalksN 𝐺) ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) |
| 24 | 11, 23 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ (〈“𝑎𝑏𝑐”〉 ∈ (2 WWalksN 𝐺) ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) |
| 25 | | iswwlksn 26730 |
. . . . . . . . . . . . . . . 16
⊢ (2 ∈
ℕ0 → (〈“𝑎𝑏𝑐”〉 ∈ (2 WWalksN 𝐺) ↔ (〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)))) |
| 26 | 1, 25 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
(〈“𝑎𝑏𝑐”〉 ∈ (2 WWalksN 𝐺) ↔ (〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1))) |
| 27 | 26 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (〈“𝑎𝑏𝑐”〉 ∈ (2 WWalksN 𝐺) ↔ (〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)))) |
| 28 | 27 | 3anbi1d 1403 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((〈“𝑎𝑏𝑐”〉 ∈ (2 WWalksN 𝐺) ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐) ↔ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) |
| 29 | 24, 28 | bitrd 268 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) |
| 30 | 22, 29 | anbi12d 747 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)))) |
| 31 | 30 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑊 = 〈“𝑎𝑏𝑐”〉) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)))) |
| 32 | 19 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 〈“𝑎𝑏𝑐”〉 ∈ Word V) |
| 33 | | simprl1 1106 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) ∧ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) → 𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉) |
| 34 | | spthiswlk 26624 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 → 𝑓(Walks‘𝐺)〈“𝑎𝑏𝑐”〉) |
| 35 | | wlklenvm1 26517 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓(Walks‘𝐺)〈“𝑎𝑏𝑐”〉 → (#‘𝑓) = ((#‘〈“𝑎𝑏𝑐”〉) − 1)) |
| 36 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((#‘𝑓) =
((#‘〈“𝑎𝑏𝑐”〉) − 1) ∧
((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) → (#‘𝑓) = ((#‘〈“𝑎𝑏𝑐”〉) − 1)) |
| 37 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((#‘〈“𝑎𝑏𝑐”〉) = (2 + 1) →
((#‘〈“𝑎𝑏𝑐”〉) − 1) = ((2 + 1) −
1)) |
| 38 | | 2cn 11091 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 2 ∈
ℂ |
| 39 | | pncan1 10454 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (2 ∈
ℂ → ((2 + 1) − 1) = 2) |
| 40 | 38, 39 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((2 + 1)
− 1) = 2 |
| 41 | 37, 40 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((#‘〈“𝑎𝑏𝑐”〉) = (2 + 1) →
((#‘〈“𝑎𝑏𝑐”〉) − 1) =
2) |
| 42 | 41 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) →
((#‘〈“𝑎𝑏𝑐”〉) − 1) =
2) |
| 43 | 42 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐) → ((#‘〈“𝑎𝑏𝑐”〉) − 1) =
2) |
| 44 | 43 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((#‘𝑓) =
((#‘〈“𝑎𝑏𝑐”〉) − 1) ∧
((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) → ((#‘〈“𝑎𝑏𝑐”〉) − 1) =
2) |
| 45 | 36, 44 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((#‘𝑓) =
((#‘〈“𝑎𝑏𝑐”〉) − 1) ∧
((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) → (#‘𝑓) = 2) |
| 46 | 45 | ex 450 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((#‘𝑓) =
((#‘〈“𝑎𝑏𝑐”〉) − 1) →
(((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐) → (#‘𝑓) = 2)) |
| 47 | 34, 35, 46 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 → (((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐) → (#‘𝑓) = 2)) |
| 48 | 47 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) → (((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐) → (#‘𝑓) = 2)) |
| 49 | 48 | imp 445 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) → (#‘𝑓) = 2) |
| 50 | 49 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) ∧ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) → (#‘𝑓) = 2) |
| 51 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑎 ∈ V |
| 52 | | s3fv0 13636 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ V →
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎) |
| 53 | 51, 52 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 |
| 54 | 53 | eqcomi 2631 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑎 = (〈“𝑎𝑏𝑐”〉‘0) |
| 55 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑏 ∈ V |
| 56 | | s3fv1 13637 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ V →
(〈“𝑎𝑏𝑐”〉‘1) = 𝑏) |
| 57 | 55, 56 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈“𝑎𝑏𝑐”〉‘1) = 𝑏 |
| 58 | 57 | eqcomi 2631 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑏 = (〈“𝑎𝑏𝑐”〉‘1) |
| 59 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑐 ∈ V |
| 60 | | s3fv2 13638 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 ∈ V →
(〈“𝑎𝑏𝑐”〉‘2) = 𝑐) |
| 61 | 59, 60 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈“𝑎𝑏𝑐”〉‘2) = 𝑐 |
| 62 | 61 | eqcomi 2631 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑐 = (〈“𝑎𝑏𝑐”〉‘2) |
| 63 | 54, 58, 62 | 3pm3.2i 1239 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (〈“𝑎𝑏𝑐”〉‘0) ∧ 𝑏 = (〈“𝑎𝑏𝑐”〉‘1) ∧ 𝑐 = (〈“𝑎𝑏𝑐”〉‘2)) |
| 64 | 63 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) ∧ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) → (𝑎 = (〈“𝑎𝑏𝑐”〉‘0) ∧ 𝑏 = (〈“𝑎𝑏𝑐”〉‘1) ∧ 𝑐 = (〈“𝑎𝑏𝑐”〉‘2))) |
| 65 | 33, 50, 64 | 3jca 1242 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) ∧ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) → (𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (〈“𝑎𝑏𝑐”〉‘0) ∧ 𝑏 = (〈“𝑎𝑏𝑐”〉‘1) ∧ 𝑐 = (〈“𝑎𝑏𝑐”〉‘2)))) |
| 66 | | breq2 4657 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (𝑓(SPaths‘𝐺)𝑝 ↔ 𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉)) |
| 67 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (𝑝‘0) = (〈“𝑎𝑏𝑐”〉‘0)) |
| 68 | 67 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (𝑎 = (𝑝‘0) ↔ 𝑎 = (〈“𝑎𝑏𝑐”〉‘0))) |
| 69 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (𝑝‘1) = (〈“𝑎𝑏𝑐”〉‘1)) |
| 70 | 69 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (𝑏 = (𝑝‘1) ↔ 𝑏 = (〈“𝑎𝑏𝑐”〉‘1))) |
| 71 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (𝑝‘2) = (〈“𝑎𝑏𝑐”〉‘2)) |
| 72 | 71 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (𝑐 = (𝑝‘2) ↔ 𝑐 = (〈“𝑎𝑏𝑐”〉‘2))) |
| 73 | 68, 70, 72 | 3anbi123d 1399 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) ↔ (𝑎 = (〈“𝑎𝑏𝑐”〉‘0) ∧ 𝑏 = (〈“𝑎𝑏𝑐”〉‘1) ∧ 𝑐 = (〈“𝑎𝑏𝑐”〉‘2)))) |
| 74 | 66, 73 | 3anbi13d 1401 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → ((𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) ↔ (𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (〈“𝑎𝑏𝑐”〉‘0) ∧ 𝑏 = (〈“𝑎𝑏𝑐”〉‘1) ∧ 𝑐 = (〈“𝑎𝑏𝑐”〉‘2))))) |
| 75 | 74 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) ∧ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) → ((𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) ↔ (𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (〈“𝑎𝑏𝑐”〉‘0) ∧ 𝑏 = (〈“𝑎𝑏𝑐”〉‘1) ∧ 𝑐 = (〈“𝑎𝑏𝑐”〉‘2))))) |
| 76 | 65, 75 | mpbird 247 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) ∧ ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) → (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) |
| 77 | 76 | ex 450 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → (((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) → (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))) |
| 78 | 32, 77 | spcimedv 3292 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) → ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))) |
| 79 | | spthiswlk 26624 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓(SPaths‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) |
| 80 | | wlklenvp1 26514 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓(Walks‘𝐺)𝑝 → (#‘𝑝) = ((#‘𝑓) + 1)) |
| 81 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((#‘𝑓) = 2
→ ((#‘𝑓) + 1) =
(2 + 1)) |
| 82 | | 2p1e3 11151 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (2 + 1) =
3 |
| 83 | 81, 82 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((#‘𝑓) = 2
→ ((#‘𝑓) + 1) =
3) |
| 84 | 83 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((#‘𝑓) = 2
→ ((#‘𝑝) =
((#‘𝑓) + 1) ↔
(#‘𝑝) =
3)) |
| 85 | 84 | biimpcd 239 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((#‘𝑝) =
((#‘𝑓) + 1) →
((#‘𝑓) = 2 →
(#‘𝑝) =
3)) |
| 86 | 79, 80, 85 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓(SPaths‘𝐺)𝑝 → ((#‘𝑓) = 2 → (#‘𝑝) = 3)) |
| 87 | 86 | imp 445 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2) → (#‘𝑝) = 3) |
| 88 | 87 | 3adant3 1081 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (#‘𝑝) = 3) |
| 89 | 88 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (#‘𝑝) = 3) |
| 90 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = (𝑝‘0) ↔ (𝑝‘0) = 𝑎) |
| 91 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = (𝑝‘1) ↔ (𝑝‘1) = 𝑏) |
| 92 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = (𝑝‘2) ↔ (𝑝‘2) = 𝑐) |
| 93 | 90, 91, 92 | 3anbi123i 1251 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) ↔ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)) |
| 94 | 93 | biimpi 206 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)) |
| 95 | 94 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)) |
| 96 | 95 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)) |
| 97 | 89, 96 | jca 554 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((#‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))) |
| 98 | 2 | wlkpwrd 26513 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓(Walks‘𝐺)𝑝 → 𝑝 ∈ Word 𝑉) |
| 99 | 79, 98 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓(SPaths‘𝐺)𝑝 → 𝑝 ∈ Word 𝑉) |
| 100 | 99 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → 𝑝 ∈ Word 𝑉) |
| 101 | 9 | anim1i 592 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑎 ∈ 𝑉 ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))) |
| 102 | | 3anass 1042 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ↔ (𝑎 ∈ 𝑉 ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))) |
| 103 | 101, 102 | sylibr 224 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) |
| 104 | | eqwrds3 13704 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑝 ∈ Word 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑝 = 〈“𝑎𝑏𝑐”〉 ↔ ((#‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)))) |
| 105 | 100, 103,
104 | syl2anr 495 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (𝑝 = 〈“𝑎𝑏𝑐”〉 ↔ ((#‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)))) |
| 106 | 97, 105 | mpbird 247 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → 𝑝 = 〈“𝑎𝑏𝑐”〉) |
| 107 | 66 | biimpcd 239 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓(SPaths‘𝐺)𝑝 → (𝑝 = 〈“𝑎𝑏𝑐”〉 → 𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉)) |
| 108 | 107 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑝 = 〈“𝑎𝑏𝑐”〉 → 𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉)) |
| 109 | 108 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (𝑝 = 〈“𝑎𝑏𝑐”〉 → 𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉)) |
| 110 | 109 | imp 445 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → 𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉) |
| 111 | 53 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → (〈“𝑎𝑏𝑐”〉‘0) = 𝑎) |
| 112 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((#‘𝑓) = 2
→ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = (〈“𝑎𝑏𝑐”〉‘2)) |
| 113 | 112, 61 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . 19
⊢
((#‘𝑓) = 2
→ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) |
| 114 | 113 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) |
| 115 | 114 | ad2antlr 763 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) |
| 116 | 110, 111,
115 | 3jca 1242 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → (𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐)) |
| 117 | | wlkiswwlks1 26753 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑝 → 𝑝 ∈ (WWalks‘𝐺))) |
| 118 | 117 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) → (𝑓(Walks‘𝐺)𝑝 → 𝑝 ∈ (WWalks‘𝐺))) |
| 119 | 118 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑓(Walks‘𝐺)𝑝 → 𝑝 ∈ (WWalks‘𝐺))) |
| 120 | 79, 119 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓(SPaths‘𝐺)𝑝 → (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑝 ∈ (WWalks‘𝐺))) |
| 121 | 120 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑝 ∈ (WWalks‘𝐺))) |
| 122 | 121 | impcom 446 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → 𝑝 ∈ (WWalks‘𝐺)) |
| 123 | 122 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → 𝑝 ∈ (WWalks‘𝐺)) |
| 124 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (𝑝 ∈ (WWalks‘𝐺) ↔ 〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺))) |
| 125 | 124 | bicomd 213 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 = 〈“𝑎𝑏𝑐”〉 → (〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ↔ 𝑝 ∈ (WWalks‘𝐺))) |
| 126 | 125 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → (〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ↔ 𝑝 ∈ (WWalks‘𝐺))) |
| 127 | 123, 126 | mpbird 247 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → 〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺)) |
| 128 | | s3len 13639 |
. . . . . . . . . . . . . . . . . . 19
⊢
(#‘〈“𝑎𝑏𝑐”〉) = 3 |
| 129 | | df-3 11080 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 = (2 +
1) |
| 130 | 128, 129 | eqtri 2644 |
. . . . . . . . . . . . . . . . . 18
⊢
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1) |
| 131 | 127, 130 | jctir 561 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → (〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1))) |
| 132 | 61 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → (〈“𝑎𝑏𝑐”〉‘2) = 𝑐) |
| 133 | 131, 111,
132 | 3jca 1242 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) |
| 134 | 116, 133 | jca 554 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑎 ∈
𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = 〈“𝑎𝑏𝑐”〉) → ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) |
| 135 | 106, 134 | mpdan 702 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐))) |
| 136 | 135 | ex 450 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)))) |
| 137 | 136 | exlimdv 1861 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)))) |
| 138 | 78, 137 | impbid 202 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) ↔ ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))) |
| 139 | 138 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑊 = 〈“𝑎𝑏𝑐”〉) → (((𝑓(SPaths‘𝐺)〈“𝑎𝑏𝑐”〉 ∧ (〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘(#‘𝑓)) = 𝑐) ∧ ((〈“𝑎𝑏𝑐”〉 ∈ (WWalks‘𝐺) ∧
(#‘〈“𝑎𝑏𝑐”〉) = (2 + 1)) ∧
(〈“𝑎𝑏𝑐”〉‘0) = 𝑎 ∧ (〈“𝑎𝑏𝑐”〉‘2) = 𝑐)) ↔ ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))) |
| 140 | 31, 139 | bitrd 268 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑊 = 〈“𝑎𝑏𝑐”〉) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))) |
| 141 | 140 | exbidv 1850 |
. . . . . . . 8
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑊 = 〈“𝑎𝑏𝑐”〉) → (∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ∃𝑓∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))) |
| 142 | 17, 141 | syl5bb 272 |
. . . . . . 7
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑊 = 〈“𝑎𝑏𝑐”〉) → ((〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)〈“𝑎𝑏𝑐”〉) ↔ ∃𝑓∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))) |
| 143 | 14, 142 | bitrd 268 |
. . . . . 6
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑊 = 〈“𝑎𝑏𝑐”〉) → (〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑓∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))) |
| 144 | 143 | pm5.32da 673 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ ∃𝑓∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))) |
| 145 | 144 | 2rexbidva 3056 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) → (∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ ∃𝑓∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))) |
| 146 | 8, 145 | syl5bb 272 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉) → (∃𝑐 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ ∃𝑓∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))) |
| 147 | 146 | rexbidva 3049 |
. 2
⊢ (𝐺 ∈ UPGraph →
(∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ 〈“𝑎𝑏𝑐”〉 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ ∃𝑓∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))) |
| 148 | 4, 7, 147 | 3bitrd 294 |
1
⊢ (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑊 = 〈“𝑎𝑏𝑐”〉 ∧ ∃𝑓∃𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))) |