MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqwrds3 Structured version   Visualization version   GIF version

Theorem eqwrds3 13704
Description: A word is equal with a length 3 string iff it has length 3 and the same symbol at each position. (Contributed by AV, 12-May-2021.)
Assertion
Ref Expression
eqwrds3 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((#‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶))))

Proof of Theorem eqwrds3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 s3cl 13624 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉)
2 eqwrd 13346 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((#‘𝑊) = (#‘⟨“𝐴𝐵𝐶”⟩) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))))
31, 2sylan2 491 . 2 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((#‘𝑊) = (#‘⟨“𝐴𝐵𝐶”⟩) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))))
4 s3len 13639 . . . . 5 (#‘⟨“𝐴𝐵𝐶”⟩) = 3
54eqeq2i 2634 . . . 4 ((#‘𝑊) = (#‘⟨“𝐴𝐵𝐶”⟩) ↔ (#‘𝑊) = 3)
65a1i 11 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((#‘𝑊) = (#‘⟨“𝐴𝐵𝐶”⟩) ↔ (#‘𝑊) = 3))
76anbi1d 741 . 2 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((#‘𝑊) = (#‘⟨“𝐴𝐵𝐶”⟩) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖)) ↔ ((#‘𝑊) = 3 ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))))
8 oveq2 6658 . . . . . 6 ((#‘𝑊) = 3 → (0..^(#‘𝑊)) = (0..^3))
9 fzo0to3tp 12554 . . . . . 6 (0..^3) = {0, 1, 2}
108, 9syl6eq 2672 . . . . 5 ((#‘𝑊) = 3 → (0..^(#‘𝑊)) = {0, 1, 2})
1110raleqdv 3144 . . . 4 ((#‘𝑊) = 3 → (∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ ∀𝑖 ∈ {0, 1, 2} (𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖)))
12 fveq2 6191 . . . . . . . 8 (𝑖 = 0 → (𝑊𝑖) = (𝑊‘0))
13 fveq2 6191 . . . . . . . 8 (𝑖 = 0 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘0))
1412, 13eqeq12d 2637 . . . . . . 7 (𝑖 = 0 → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘0) = (⟨“𝐴𝐵𝐶”⟩‘0)))
15 s3fv0 13636 . . . . . . . . 9 (𝐴𝑉 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
16153ad2ant1 1082 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
1716eqeq2d 2632 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑊‘0) = (⟨“𝐴𝐵𝐶”⟩‘0) ↔ (𝑊‘0) = 𝐴))
1814, 17sylan9bbr 737 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝑖 = 0) → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘0) = 𝐴))
19 fveq2 6191 . . . . . . . 8 (𝑖 = 1 → (𝑊𝑖) = (𝑊‘1))
20 fveq2 6191 . . . . . . . 8 (𝑖 = 1 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘1))
2119, 20eqeq12d 2637 . . . . . . 7 (𝑖 = 1 → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘1) = (⟨“𝐴𝐵𝐶”⟩‘1)))
22 s3fv1 13637 . . . . . . . . 9 (𝐵𝑉 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
2322eqeq2d 2632 . . . . . . . 8 (𝐵𝑉 → ((𝑊‘1) = (⟨“𝐴𝐵𝐶”⟩‘1) ↔ (𝑊‘1) = 𝐵))
24233ad2ant2 1083 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑊‘1) = (⟨“𝐴𝐵𝐶”⟩‘1) ↔ (𝑊‘1) = 𝐵))
2521, 24sylan9bbr 737 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝑖 = 1) → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘1) = 𝐵))
26 fveq2 6191 . . . . . . . 8 (𝑖 = 2 → (𝑊𝑖) = (𝑊‘2))
27 fveq2 6191 . . . . . . . 8 (𝑖 = 2 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘2))
2826, 27eqeq12d 2637 . . . . . . 7 (𝑖 = 2 → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘2) = (⟨“𝐴𝐵𝐶”⟩‘2)))
29 s3fv2 13638 . . . . . . . . 9 (𝐶𝑉 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3029eqeq2d 2632 . . . . . . . 8 (𝐶𝑉 → ((𝑊‘2) = (⟨“𝐴𝐵𝐶”⟩‘2) ↔ (𝑊‘2) = 𝐶))
31303ad2ant3 1084 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑊‘2) = (⟨“𝐴𝐵𝐶”⟩‘2) ↔ (𝑊‘2) = 𝐶))
3228, 31sylan9bbr 737 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝑖 = 2) → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘2) = 𝐶))
33 0zd 11389 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 0 ∈ ℤ)
34 1zzd 11408 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 1 ∈ ℤ)
35 2z 11409 . . . . . . 7 2 ∈ ℤ
3635a1i 11 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 2 ∈ ℤ)
3718, 25, 32, 33, 34, 36raltpd 4315 . . . . 5 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (∀𝑖 ∈ {0, 1, 2} (𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶)))
3837adantl 482 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (∀𝑖 ∈ {0, 1, 2} (𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶)))
3911, 38sylan9bbr 737 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (#‘𝑊) = 3) → (∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶)))
4039pm5.32da 673 . 2 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((#‘𝑊) = 3 ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖)) ↔ ((#‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶))))
413, 7, 403bitrd 294 1 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((#‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {ctp 4181  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937  2c2 11070  3c3 11071  cz 11377  ..^cfzo 12465  #chash 13117  Word cword 13291  ⟨“cs3 13587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594
This theorem is referenced by:  wrdl3s3  13705  s3sndisj  13706  s3iunsndisj  13707  elwwlks2ons3  26848  umgrwwlks2on  26850  elwwlks2  26861  elwspths2spth  26862
  Copyright terms: Public domain W3C validator