| Step | Hyp | Ref
| Expression |
| 1 | | simpr 477 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑀)) → 𝑛 ∈ (0...𝑀)) |
| 2 | | simpl 473 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑀)) → 𝜑) |
| 3 | | fveq2 6191 |
. . . . 5
⊢ (𝑘 = 0 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘0)) |
| 4 | | csbeq1 3536 |
. . . . . . 7
⊢ (𝑘 = 0 → ⦋𝑘 / 𝑛⦌𝐵 = ⦋0 / 𝑛⦌𝐵) |
| 5 | 4 | oveq1d 6665 |
. . . . . 6
⊢ (𝑘 = 0 →
(⦋𝑘 / 𝑛⦌𝐵 / 𝐶) = (⦋0 / 𝑛⦌𝐵 / 𝐶)) |
| 6 | 5 | mpteq2dv 4745 |
. . . . 5
⊢ (𝑘 = 0 → (𝑥 ∈ 𝑋 ↦ (⦋𝑘 / 𝑛⦌𝐵 / 𝐶)) = (𝑥 ∈ 𝑋 ↦ (⦋0 / 𝑛⦌𝐵 / 𝐶))) |
| 7 | 3, 6 | eqeq12d 2637 |
. . . 4
⊢ (𝑘 = 0 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ (⦋𝑘 / 𝑛⦌𝐵 / 𝐶)) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥 ∈ 𝑋 ↦ (⦋0 / 𝑛⦌𝐵 / 𝐶)))) |
| 8 | 7 | imbi2d 330 |
. . 3
⊢ (𝑘 = 0 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ (⦋𝑘 / 𝑛⦌𝐵 / 𝐶))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥 ∈ 𝑋 ↦ (⦋0 / 𝑛⦌𝐵 / 𝐶))))) |
| 9 | | fveq2 6191 |
. . . . 5
⊢ (𝑘 = 𝑗 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)) |
| 10 | | csbeq1 3536 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → ⦋𝑘 / 𝑛⦌𝐵 = ⦋𝑗 / 𝑛⦌𝐵) |
| 11 | 10 | oveq1d 6665 |
. . . . . 6
⊢ (𝑘 = 𝑗 → (⦋𝑘 / 𝑛⦌𝐵 / 𝐶) = (⦋𝑗 / 𝑛⦌𝐵 / 𝐶)) |
| 12 | 11 | mpteq2dv 4745 |
. . . . 5
⊢ (𝑘 = 𝑗 → (𝑥 ∈ 𝑋 ↦ (⦋𝑘 / 𝑛⦌𝐵 / 𝐶)) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) |
| 13 | 9, 12 | eqeq12d 2637 |
. . . 4
⊢ (𝑘 = 𝑗 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ (⦋𝑘 / 𝑛⦌𝐵 / 𝐶)) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶)))) |
| 14 | 13 | imbi2d 330 |
. . 3
⊢ (𝑘 = 𝑗 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ (⦋𝑘 / 𝑛⦌𝐵 / 𝐶))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))))) |
| 15 | | fveq2 6191 |
. . . . 5
⊢ (𝑘 = (𝑗 + 1) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1))) |
| 16 | | csbeq1 3536 |
. . . . . . 7
⊢ (𝑘 = (𝑗 + 1) → ⦋𝑘 / 𝑛⦌𝐵 = ⦋(𝑗 + 1) / 𝑛⦌𝐵) |
| 17 | 16 | oveq1d 6665 |
. . . . . 6
⊢ (𝑘 = (𝑗 + 1) → (⦋𝑘 / 𝑛⦌𝐵 / 𝐶) = (⦋(𝑗 + 1) / 𝑛⦌𝐵 / 𝐶)) |
| 18 | 17 | mpteq2dv 4745 |
. . . . 5
⊢ (𝑘 = (𝑗 + 1) → (𝑥 ∈ 𝑋 ↦ (⦋𝑘 / 𝑛⦌𝐵 / 𝐶)) = (𝑥 ∈ 𝑋 ↦ (⦋(𝑗 + 1) / 𝑛⦌𝐵 / 𝐶))) |
| 19 | 15, 18 | eqeq12d 2637 |
. . . 4
⊢ (𝑘 = (𝑗 + 1) → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ (⦋𝑘 / 𝑛⦌𝐵 / 𝐶)) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥 ∈ 𝑋 ↦ (⦋(𝑗 + 1) / 𝑛⦌𝐵 / 𝐶)))) |
| 20 | 19 | imbi2d 330 |
. . 3
⊢ (𝑘 = (𝑗 + 1) → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ (⦋𝑘 / 𝑛⦌𝐵 / 𝐶))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥 ∈ 𝑋 ↦ (⦋(𝑗 + 1) / 𝑛⦌𝐵 / 𝐶))))) |
| 21 | | fveq2 6191 |
. . . . 5
⊢ (𝑘 = 𝑛 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑛)) |
| 22 | | csbeq1a 3542 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → 𝐵 = ⦋𝑘 / 𝑛⦌𝐵) |
| 23 | 22 | equcoms 1947 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → 𝐵 = ⦋𝑘 / 𝑛⦌𝐵) |
| 24 | 23 | eqcomd 2628 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → ⦋𝑘 / 𝑛⦌𝐵 = 𝐵) |
| 25 | 24 | oveq1d 6665 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (⦋𝑘 / 𝑛⦌𝐵 / 𝐶) = (𝐵 / 𝐶)) |
| 26 | 25 | mpteq2dv 4745 |
. . . . 5
⊢ (𝑘 = 𝑛 → (𝑥 ∈ 𝑋 ↦ (⦋𝑘 / 𝑛⦌𝐵 / 𝐶)) = (𝑥 ∈ 𝑋 ↦ (𝐵 / 𝐶))) |
| 27 | 21, 26 | eqeq12d 2637 |
. . . 4
⊢ (𝑘 = 𝑛 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ (⦋𝑘 / 𝑛⦌𝐵 / 𝐶)) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ (𝐵 / 𝐶)))) |
| 28 | 27 | imbi2d 330 |
. . 3
⊢ (𝑘 = 𝑛 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ (⦋𝑘 / 𝑛⦌𝐵 / 𝐶))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ (𝐵 / 𝐶))))) |
| 29 | | dvnmptdivc.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| 30 | | recnprss 23668 |
. . . . . . 7
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
| 31 | 29, 30 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 32 | | cnex 10017 |
. . . . . . . 8
⊢ ℂ
∈ V |
| 33 | 32 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℂ ∈
V) |
| 34 | | dvnmptdivc.a |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| 35 | | dvnmptdivc.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 36 | 35 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) |
| 37 | | dvnmptdivc.cne0 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ≠ 0) |
| 38 | 37 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ≠ 0) |
| 39 | 34, 36, 38 | divcld 10801 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 / 𝐶) ∈ ℂ) |
| 40 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)) = (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)) |
| 41 | 39, 40 | fmptd 6385 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)):𝑋⟶ℂ) |
| 42 | | dvnmptdivc.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 43 | | elpm2r 7875 |
. . . . . . 7
⊢
(((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)):𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ
↑pm 𝑆)) |
| 44 | 33, 29, 41, 42, 43 | syl22anc 1327 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ
↑pm 𝑆)) |
| 45 | | dvn0 23687 |
. . . . . 6
⊢ ((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ
↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶))) |
| 46 | 31, 44, 45 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶))) |
| 47 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝜑) |
| 48 | | dvnmptdivc.8 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 49 | | nn0uz 11722 |
. . . . . . . . . . . . . 14
⊢
ℕ0 = (ℤ≥‘0) |
| 50 | 48, 49 | syl6eleq 2711 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
| 51 | | eluzfz1 12348 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑀)) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
| 53 | | nfv 1843 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛(𝜑 ∧ 0 ∈ (0...𝑀)) |
| 54 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘0) |
| 55 | | nfcv 2764 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛𝑋 |
| 56 | | nfcsb1v 3549 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛⦋0 / 𝑛⦌𝐵 |
| 57 | 55, 56 | nfmpt 4746 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛(𝑥 ∈ 𝑋 ↦ ⦋0 / 𝑛⦌𝐵) |
| 58 | 54, 57 | nfeq 2776 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘0) = (𝑥 ∈ 𝑋 ↦ ⦋0 / 𝑛⦌𝐵) |
| 59 | 53, 58 | nfim 1825 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛((𝜑 ∧ 0 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘0) = (𝑥 ∈ 𝑋 ↦ ⦋0 / 𝑛⦌𝐵)) |
| 60 | | c0ex 10034 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
| 61 | | eleq1 2689 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 0 → (𝑛 ∈ (0...𝑀) ↔ 0 ∈ (0...𝑀))) |
| 62 | 61 | anbi2d 740 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 0 → ((𝜑 ∧ 𝑛 ∈ (0...𝑀)) ↔ (𝜑 ∧ 0 ∈ (0...𝑀)))) |
| 63 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 0 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘0)) |
| 64 | | csbeq1a 3542 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 0 → 𝐵 = ⦋0 / 𝑛⦌𝐵) |
| 65 | 64 | mpteq2dv 4745 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 0 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ ⦋0 / 𝑛⦌𝐵)) |
| 66 | 63, 65 | eqeq12d 2637 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 0 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 𝐵) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘0) = (𝑥 ∈ 𝑋 ↦ ⦋0 / 𝑛⦌𝐵))) |
| 67 | 62, 66 | imbi12d 334 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 0 → (((𝜑 ∧ 𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ↔ ((𝜑 ∧ 0 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘0) = (𝑥 ∈ 𝑋 ↦ ⦋0 / 𝑛⦌𝐵)))) |
| 68 | | dvnmptdivc.dvn |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 69 | 59, 60, 67, 68 | vtoclf 3258 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 0 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘0) = (𝑥 ∈ 𝑋 ↦ ⦋0 / 𝑛⦌𝐵)) |
| 70 | 47, 52, 69 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘0) = (𝑥 ∈ 𝑋 ↦ ⦋0 / 𝑛⦌𝐵)) |
| 71 | 70 | fveq1d 6193 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘0)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ ⦋0 / 𝑛⦌𝐵)‘𝑥)) |
| 72 | 71 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘0)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ ⦋0 / 𝑛⦌𝐵)‘𝑥)) |
| 73 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 74 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝜑) |
| 75 | 52 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈ (0...𝑀)) |
| 76 | | 0re 10040 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
| 77 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛0 |
| 78 | | nfv 1843 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ (0...𝑀)) |
| 79 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛ℂ |
| 80 | 56, 79 | nfel 2777 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛⦋0 / 𝑛⦌𝐵 ∈ ℂ |
| 81 | 78, 80 | nfim 1825 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ (0...𝑀)) → ⦋0 / 𝑛⦌𝐵 ∈ ℂ) |
| 82 | 61 | 3anbi3d 1405 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 0 → ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ (0...𝑀)) ↔ (𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ (0...𝑀)))) |
| 83 | 64 | eleq1d 2686 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 0 → (𝐵 ∈ ℂ ↔ ⦋0 /
𝑛⦌𝐵 ∈
ℂ)) |
| 84 | 82, 83 | imbi12d 334 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 0 → (((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ (0...𝑀)) → ⦋0 / 𝑛⦌𝐵 ∈ ℂ))) |
| 85 | | dvnmptdivc.b |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ) |
| 86 | 77, 81, 84, 85 | vtoclgf 3264 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℝ → ((𝜑 ∧
𝑥 ∈ 𝑋 ∧ 0 ∈ (0...𝑀)) → ⦋0 / 𝑛⦌𝐵 ∈ ℂ)) |
| 87 | 76, 86 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ (0...𝑀)) → ⦋0 / 𝑛⦌𝐵 ∈ ℂ) |
| 88 | 74, 73, 75, 87 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋0 / 𝑛⦌𝐵 ∈ ℂ) |
| 89 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑋 ↦ ⦋0 / 𝑛⦌𝐵) = (𝑥 ∈ 𝑋 ↦ ⦋0 / 𝑛⦌𝐵) |
| 90 | 89 | fvmpt2 6291 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑋 ∧ ⦋0 / 𝑛⦌𝐵 ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ ⦋0 / 𝑛⦌𝐵)‘𝑥) = ⦋0 / 𝑛⦌𝐵) |
| 91 | 73, 88, 90 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ⦋0 / 𝑛⦌𝐵)‘𝑥) = ⦋0 / 𝑛⦌𝐵) |
| 92 | 72, 91 | eqtr2d 2657 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋0 / 𝑛⦌𝐵 = (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘0)‘𝑥)) |
| 93 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) |
| 94 | 34, 93 | fmptd 6385 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
| 95 | | elpm2r 7875 |
. . . . . . . . . . . 12
⊢
(((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (ℂ ↑pm
𝑆)) |
| 96 | 33, 29, 94, 42, 95 | syl22anc 1327 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (ℂ ↑pm
𝑆)) |
| 97 | | dvn0 23687 |
. . . . . . . . . . 11
⊢ ((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (ℂ ↑pm
𝑆)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘0) = (𝑥 ∈ 𝑋 ↦ 𝐴)) |
| 98 | 31, 96, 97 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘0) = (𝑥 ∈ 𝑋 ↦ 𝐴)) |
| 99 | 98 | fveq1d 6193 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘0)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) |
| 100 | 99 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘0)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) |
| 101 | 93 | fvmpt2 6291 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
| 102 | 73, 34, 101 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
| 103 | 92, 100, 102 | 3eqtrrd 2661 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 = ⦋0 / 𝑛⦌𝐵) |
| 104 | 103 | oveq1d 6665 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 / 𝐶) = (⦋0 / 𝑛⦌𝐵 / 𝐶)) |
| 105 | 104 | mpteq2dva 4744 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)) = (𝑥 ∈ 𝑋 ↦ (⦋0 / 𝑛⦌𝐵 / 𝐶))) |
| 106 | 46, 105 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥 ∈ 𝑋 ↦ (⦋0 / 𝑛⦌𝐵 / 𝐶))) |
| 107 | 106 | a1i 11 |
. . 3
⊢ (𝑀 ∈
(ℤ≥‘0) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥 ∈ 𝑋 ↦ (⦋0 / 𝑛⦌𝐵 / 𝐶)))) |
| 108 | | simp3 1063 |
. . . . 5
⊢ ((𝑗 ∈ (0..^𝑀) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) ∧ 𝜑) → 𝜑) |
| 109 | | simp1 1061 |
. . . . 5
⊢ ((𝑗 ∈ (0..^𝑀) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) ∧ 𝜑) → 𝑗 ∈ (0..^𝑀)) |
| 110 | | simpr 477 |
. . . . . . 7
⊢ (((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) ∧ 𝜑) → 𝜑) |
| 111 | | simpl 473 |
. . . . . . 7
⊢ (((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) ∧ 𝜑) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶)))) |
| 112 | 110, 111 | mpd 15 |
. . . . . 6
⊢ (((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) |
| 113 | 112 | 3adant1 1079 |
. . . . 5
⊢ ((𝑗 ∈ (0..^𝑀) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) |
| 114 | 31 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) → 𝑆 ⊆ ℂ) |
| 115 | 44 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ
↑pm 𝑆)) |
| 116 | | elfzofz 12485 |
. . . . . . . 8
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀)) |
| 117 | | elfznn0 12433 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0) |
| 118 | 117 | ad2antlr 763 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) → 𝑗 ∈ ℕ0) |
| 119 | 116, 118 | sylanl2 683 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) → 𝑗 ∈ ℕ0) |
| 120 | | dvnp1 23688 |
. . . . . . 7
⊢ ((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ
↑pm 𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗))) |
| 121 | 114, 115,
119, 120 | syl3anc 1326 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗))) |
| 122 | | oveq2 6658 |
. . . . . . 7
⊢ (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶)) → (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶)))) |
| 123 | 122 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) → (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶)))) |
| 124 | 31 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑆 ⊆ ℂ) |
| 125 | 44 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ
↑pm 𝑆)) |
| 126 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀)) |
| 127 | 126, 117 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0) |
| 128 | 116, 127 | sylan2 491 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ ℕ0) |
| 129 | 124, 125,
128, 120 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗))) |
| 130 | 129 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗))) |
| 131 | 29 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑆 ∈ {ℝ, ℂ}) |
| 132 | | simplr 792 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ 𝑋) → 𝑗 ∈ (0...𝑀)) |
| 133 | 47 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ 𝑋) → 𝜑) |
| 134 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 135 | 133, 134,
132 | 3jca 1242 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ 𝑋) → (𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ (0...𝑀))) |
| 136 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛𝑗 |
| 137 | | nfv 1843 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ (0...𝑀)) |
| 138 | 136 | nfcsb1 3548 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛⦋𝑗 / 𝑛⦌𝐵 |
| 139 | 138, 79 | nfel 2777 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛⦋𝑗 / 𝑛⦌𝐵 ∈ ℂ |
| 140 | 137, 139 | nfim 1825 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ (0...𝑀)) → ⦋𝑗 / 𝑛⦌𝐵 ∈ ℂ) |
| 141 | | eleq1 2689 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑗 → (𝑛 ∈ (0...𝑀) ↔ 𝑗 ∈ (0...𝑀))) |
| 142 | 141 | 3anbi3d 1405 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑗 → ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ (0...𝑀)) ↔ (𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ (0...𝑀)))) |
| 143 | | csbeq1a 3542 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑛⦌𝐵) |
| 144 | 143 | eleq1d 2686 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑛⦌𝐵 ∈ ℂ)) |
| 145 | 142, 144 | imbi12d 334 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑗 → (((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ (0...𝑀)) → ⦋𝑗 / 𝑛⦌𝐵 ∈ ℂ))) |
| 146 | 136, 140,
145, 85 | vtoclgf 3264 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ (0...𝑀)) → ⦋𝑗 / 𝑛⦌𝐵 ∈ ℂ)) |
| 147 | 132, 135,
146 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ 𝑋) → ⦋𝑗 / 𝑛⦌𝐵 ∈ ℂ) |
| 148 | 116, 147 | sylanl2 683 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑥 ∈ 𝑋) → ⦋𝑗 / 𝑛⦌𝐵 ∈ ℂ) |
| 149 | | fzofzp1 12565 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀)) |
| 150 | 149 | ad2antlr 763 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑥 ∈ 𝑋) → (𝑗 + 1) ∈ (0...𝑀)) |
| 151 | 116, 133 | sylanl2 683 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑥 ∈ 𝑋) → 𝜑) |
| 152 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 153 | 151, 152,
150 | 3jca 1242 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑥 ∈ 𝑋) → (𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀))) |
| 154 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛(𝑗 + 1) |
| 155 | | nfv 1843 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)) |
| 156 | 154 | nfcsb1 3548 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛⦋(𝑗 + 1) / 𝑛⦌𝐵 |
| 157 | 156, 79 | nfel 2777 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛⦋(𝑗 + 1) / 𝑛⦌𝐵 ∈ ℂ |
| 158 | 155, 157 | nfim 1825 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)) → ⦋(𝑗 + 1) / 𝑛⦌𝐵 ∈ ℂ) |
| 159 | | eleq1 2689 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑗 + 1) → (𝑛 ∈ (0...𝑀) ↔ (𝑗 + 1) ∈ (0...𝑀))) |
| 160 | 159 | 3anbi3d 1405 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑗 + 1) → ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ (0...𝑀)) ↔ (𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)))) |
| 161 | | csbeq1a 3542 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑗 + 1) → 𝐵 = ⦋(𝑗 + 1) / 𝑛⦌𝐵) |
| 162 | 161 | eleq1d 2686 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑗 + 1) → (𝐵 ∈ ℂ ↔ ⦋(𝑗 + 1) / 𝑛⦌𝐵 ∈ ℂ)) |
| 163 | 160, 162 | imbi12d 334 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑗 + 1) → (((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)) → ⦋(𝑗 + 1) / 𝑛⦌𝐵 ∈ ℂ))) |
| 164 | 154, 158,
163, 85 | vtoclgf 3264 |
. . . . . . . . . . . 12
⊢ ((𝑗 + 1) ∈ (0...𝑀) → ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)) → ⦋(𝑗 + 1) / 𝑛⦌𝐵 ∈ ℂ)) |
| 165 | 150, 153,
164 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑥 ∈ 𝑋) → ⦋(𝑗 + 1) / 𝑛⦌𝐵 ∈ ℂ) |
| 166 | | simpl 473 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝜑) |
| 167 | 116 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀)) |
| 168 | | nfv 1843 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑛(𝜑 ∧ 𝑗 ∈ (0...𝑀)) |
| 169 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑗) |
| 170 | 55, 138 | nfmpt 4746 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛(𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑛⦌𝐵) |
| 171 | 169, 170 | nfeq 2776 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑛((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑗) = (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑛⦌𝐵) |
| 172 | 168, 171 | nfim 1825 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑗) = (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑛⦌𝐵)) |
| 173 | 141 | anbi2d 740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → ((𝜑 ∧ 𝑛 ∈ (0...𝑀)) ↔ (𝜑 ∧ 𝑗 ∈ (0...𝑀)))) |
| 174 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑗 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑗)) |
| 175 | 143 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑗 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑛⦌𝐵)) |
| 176 | 174, 175 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 𝐵) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑗) = (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑛⦌𝐵))) |
| 177 | 173, 176 | imbi12d 334 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑗 → (((𝜑 ∧ 𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ↔ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑗) = (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑛⦌𝐵)))) |
| 178 | 172, 177,
68 | chvar 2262 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑗) = (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑛⦌𝐵)) |
| 179 | 166, 167,
178 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑗) = (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑛⦌𝐵)) |
| 180 | 179 | eqcomd 2628 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑛⦌𝐵) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑗)) |
| 181 | 180 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑛⦌𝐵)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑗))) |
| 182 | 166, 96 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (ℂ ↑pm
𝑆)) |
| 183 | | dvnp1 23688 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (ℂ ↑pm
𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑗))) |
| 184 | 124, 182,
128, 183 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑗))) |
| 185 | 184 | eqcomd 2628 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑗)) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑗 + 1))) |
| 186 | 149 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀)) |
| 187 | 166, 186 | jca 554 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀))) |
| 188 | | nfv 1843 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛(𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)) |
| 189 | | nfcv 2764 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑗 + 1)) |
| 190 | 55, 156 | nfmpt 4746 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛(𝑥 ∈ 𝑋 ↦ ⦋(𝑗 + 1) / 𝑛⦌𝐵) |
| 191 | 189, 190 | nfeq 2776 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑗 + 1)) = (𝑥 ∈ 𝑋 ↦ ⦋(𝑗 + 1) / 𝑛⦌𝐵) |
| 192 | 188, 191 | nfim 1825 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛((𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑗 + 1)) = (𝑥 ∈ 𝑋 ↦ ⦋(𝑗 + 1) / 𝑛⦌𝐵)) |
| 193 | 159 | anbi2d 740 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑗 + 1) → ((𝜑 ∧ 𝑛 ∈ (0...𝑀)) ↔ (𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)))) |
| 194 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑗 + 1) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑗 + 1))) |
| 195 | 161 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑗 + 1) → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ ⦋(𝑗 + 1) / 𝑛⦌𝐵)) |
| 196 | 194, 195 | eqeq12d 2637 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑗 + 1) → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 𝐵) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑗 + 1)) = (𝑥 ∈ 𝑋 ↦ ⦋(𝑗 + 1) / 𝑛⦌𝐵))) |
| 197 | 193, 196 | imbi12d 334 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑗 + 1) → (((𝜑 ∧ 𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ↔ ((𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑗 + 1)) = (𝑥 ∈ 𝑋 ↦ ⦋(𝑗 + 1) / 𝑛⦌𝐵)))) |
| 198 | 154, 192,
197, 68 | vtoclgf 3264 |
. . . . . . . . . . . . 13
⊢ ((𝑗 + 1) ∈ (0...𝑀) → ((𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑗 + 1)) = (𝑥 ∈ 𝑋 ↦ ⦋(𝑗 + 1) / 𝑛⦌𝐵))) |
| 199 | 186, 187,
198 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘(𝑗 + 1)) = (𝑥 ∈ 𝑋 ↦ ⦋(𝑗 + 1) / 𝑛⦌𝐵)) |
| 200 | 181, 185,
199 | 3eqtrd 2660 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑛⦌𝐵)) = (𝑥 ∈ 𝑋 ↦ ⦋(𝑗 + 1) / 𝑛⦌𝐵)) |
| 201 | 35 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝐶 ∈ ℂ) |
| 202 | 37 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝐶 ≠ 0) |
| 203 | 131, 148,
165, 200, 201, 202 | dvmptdivc 23728 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) = (𝑥 ∈ 𝑋 ↦ (⦋(𝑗 + 1) / 𝑛⦌𝐵 / 𝐶))) |
| 204 | 203 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) → (𝑆 D (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) = (𝑥 ∈ 𝑋 ↦ (⦋(𝑗 + 1) / 𝑛⦌𝐵 / 𝐶))) |
| 205 | 130, 123,
204 | 3eqtrd 2660 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥 ∈ 𝑋 ↦ (⦋(𝑗 + 1) / 𝑛⦌𝐵 / 𝐶))) |
| 206 | 205 | eqcomd 2628 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) → (𝑥 ∈ 𝑋 ↦ (⦋(𝑗 + 1) / 𝑛⦌𝐵 / 𝐶)) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1))) |
| 207 | 206, 121,
123 | 3eqtrrd 2661 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) → (𝑆 D (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) = (𝑥 ∈ 𝑋 ↦ (⦋(𝑗 + 1) / 𝑛⦌𝐵 / 𝐶))) |
| 208 | 121, 123,
207 | 3eqtrd 2660 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥 ∈ 𝑋 ↦ (⦋(𝑗 + 1) / 𝑛⦌𝐵 / 𝐶))) |
| 209 | 108, 109,
113, 208 | syl21anc 1325 |
. . . 4
⊢ ((𝑗 ∈ (0..^𝑀) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥 ∈ 𝑋 ↦ (⦋(𝑗 + 1) / 𝑛⦌𝐵 / 𝐶))) |
| 210 | 209 | 3exp 1264 |
. . 3
⊢ (𝑗 ∈ (0..^𝑀) → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ (⦋𝑗 / 𝑛⦌𝐵 / 𝐶))) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥 ∈ 𝑋 ↦ (⦋(𝑗 + 1) / 𝑛⦌𝐵 / 𝐶))))) |
| 211 | 8, 14, 20, 28, 107, 210 | fzind2 12586 |
. 2
⊢ (𝑛 ∈ (0...𝑀) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ (𝐵 / 𝐶)))) |
| 212 | 1, 2, 211 | sylc 65 |
1
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ (𝐵 / 𝐶))) |