| Step | Hyp | Ref
| Expression |
| 1 | | 1mavmul.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 2 | | 1mavmul.t |
. . 3
⊢ · =
(𝑅 maVecMul 〈𝑁, 𝑁〉) |
| 3 | | 1mavmul.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
| 4 | | eqid 2622 |
. . 3
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 5 | | 1mavmul.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 6 | | 1mavmul.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 7 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 8 | 1 | fveq2i 6194 |
. . . . 5
⊢
(1r‘𝐴) = (1r‘(𝑁 Mat 𝑅)) |
| 9 | 1, 7, 8 | mat1bas 20255 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) →
(1r‘𝐴)
∈ (Base‘𝐴)) |
| 10 | 5, 6, 9 | syl2anc 693 |
. . 3
⊢ (𝜑 → (1r‘𝐴) ∈ (Base‘𝐴)) |
| 11 | | 1mavmul.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 𝑁)) |
| 12 | 1, 2, 3, 4, 5, 6, 10, 11 | mavmulval 20351 |
. 2
⊢ (𝜑 →
((1r‘𝐴)
·
𝑌) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗)))))) |
| 13 | | eqid 2622 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 14 | | eqid 2622 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 15 | 1, 13, 14 | mat1 20253 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(1r‘𝐴) =
(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))) |
| 16 | 6, 5, 15 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝐴) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))) |
| 17 | 16 | oveqdr 6674 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑖(1r‘𝐴)𝑗) = (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)) |
| 18 | 17 | oveq1d 6665 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗)) = ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗))) |
| 19 | 18 | mpteq2dv 4745 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑗 ∈ 𝑁 ↦ ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗))) = (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗)))) |
| 20 | 19 | oveq2d 6666 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗))))) |
| 21 | | eqidd 2623 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅))) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))) |
| 22 | | eqeq12 2635 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑥 = 𝑦 ↔ 𝑖 = 𝑗)) |
| 23 | 22 | ifbid 4108 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
| 24 | 23 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ (𝑥 = 𝑖 ∧ 𝑦 = 𝑗)) → if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
| 25 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 26 | 25 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 27 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 28 | | fvexd 6203 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (1r‘𝑅) ∈ V) |
| 29 | | fvexd 6203 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (0g‘𝑅) ∈ V) |
| 30 | 28, 29 | ifcld 4131 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) ∈ V) |
| 31 | 21, 24, 26, 27, 30 | ovmpt2d 6788 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
| 32 | 31 | oveq1d 6665 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗)) = (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗))) |
| 33 | | iftrue 4092 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) = (1r‘𝑅)) |
| 34 | 33 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) = (1r‘𝑅)) |
| 35 | 34 | oveq1d 6665 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = ((1r‘𝑅)(.r‘𝑅)(𝑌‘𝑗))) |
| 36 | 5 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 37 | 36 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 38 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘𝑅)
∈ V |
| 39 | 3, 38 | eqeltri 2697 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐵 ∈ V |
| 40 | 39 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈ V) |
| 41 | 40, 6 | elmapd 7871 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑌 ∈ (𝐵 ↑𝑚 𝑁) ↔ 𝑌:𝑁⟶𝐵)) |
| 42 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑌:𝑁⟶𝐵 ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
| 43 | 42 | ex 450 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌:𝑁⟶𝐵 → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵)) |
| 44 | 41, 43 | syl6bi 243 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑌 ∈ (𝐵 ↑𝑚 𝑁) → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵))) |
| 45 | 11, 44 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵)) |
| 46 | 45 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵)) |
| 47 | 46 | imp 445 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
| 48 | 3, 4, 13 | ringlidm 18571 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ (𝑌‘𝑗) ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (𝑌‘𝑗)) |
| 49 | 37, 47, 48 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((1r‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (𝑌‘𝑗)) |
| 50 | 49 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → ((1r‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (𝑌‘𝑗)) |
| 51 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → (𝑌‘𝑗) = (𝑌‘𝑖)) |
| 52 | 51 | equcoms 1947 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (𝑌‘𝑗) = (𝑌‘𝑖)) |
| 53 | 52 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (𝑌‘𝑗) = (𝑌‘𝑖)) |
| 54 | 35, 50, 53 | 3eqtrd 2660 |
. . . . . . . . 9
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = (𝑌‘𝑖)) |
| 55 | | iftrue 4092 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)) = (𝑌‘𝑖)) |
| 56 | 55 | equcoms 1947 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)) = (𝑌‘𝑖)) |
| 57 | 56 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)) = (𝑌‘𝑖)) |
| 58 | 54, 57 | eqtr4d 2659 |
. . . . . . . 8
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
| 59 | | iffalse 4095 |
. . . . . . . . . . 11
⊢ (¬
𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 60 | 59 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (¬
𝑖 = 𝑗 → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = ((0g‘𝑅)(.r‘𝑅)(𝑌‘𝑗))) |
| 61 | 60 | adantr 481 |
. . . . . . . . 9
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = ((0g‘𝑅)(.r‘𝑅)(𝑌‘𝑗))) |
| 62 | 3, 4, 14 | ringlz 18587 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ (𝑌‘𝑗) ∈ 𝐵) → ((0g‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (0g‘𝑅)) |
| 63 | 37, 47, 62 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((0g‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (0g‘𝑅)) |
| 64 | 63 | adantl 482 |
. . . . . . . . 9
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → ((0g‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (0g‘𝑅)) |
| 65 | | eqcom 2629 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 ↔ 𝑗 = 𝑖) |
| 66 | | iffalse 4095 |
. . . . . . . . . . . 12
⊢ (¬
𝑗 = 𝑖 → if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)) = (0g‘𝑅)) |
| 67 | 65, 66 | sylnbi 320 |
. . . . . . . . . . 11
⊢ (¬
𝑖 = 𝑗 → if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)) = (0g‘𝑅)) |
| 68 | 67 | eqcomd 2628 |
. . . . . . . . . 10
⊢ (¬
𝑖 = 𝑗 → (0g‘𝑅) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
| 69 | 68 | adantr 481 |
. . . . . . . . 9
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (0g‘𝑅) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
| 70 | 61, 64, 69 | 3eqtrd 2660 |
. . . . . . . 8
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
| 71 | 58, 70 | pm2.61ian 831 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
| 72 | 32, 71 | eqtrd 2656 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗)) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
| 73 | 72 | mpteq2dva 4744 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗))) = (𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)))) |
| 74 | 73 | oveq2d 6666 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))))) |
| 75 | | ringmnd 18556 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 76 | 5, 75 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 77 | 76 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ Mnd) |
| 78 | 6 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 79 | | eqid 2622 |
. . . . 5
⊢ (𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) = (𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
| 80 | | ffvelrn 6357 |
. . . . . . . . . 10
⊢ ((𝑌:𝑁⟶𝐵 ∧ 𝑖 ∈ 𝑁) → (𝑌‘𝑖) ∈ 𝐵) |
| 81 | 80, 3 | syl6eleq 2711 |
. . . . . . . . 9
⊢ ((𝑌:𝑁⟶𝐵 ∧ 𝑖 ∈ 𝑁) → (𝑌‘𝑖) ∈ (Base‘𝑅)) |
| 82 | 81 | ex 450 |
. . . . . . . 8
⊢ (𝑌:𝑁⟶𝐵 → (𝑖 ∈ 𝑁 → (𝑌‘𝑖) ∈ (Base‘𝑅))) |
| 83 | 41, 82 | syl6bi 243 |
. . . . . . 7
⊢ (𝜑 → (𝑌 ∈ (𝐵 ↑𝑚 𝑁) → (𝑖 ∈ 𝑁 → (𝑌‘𝑖) ∈ (Base‘𝑅)))) |
| 84 | 11, 83 | mpd 15 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ 𝑁 → (𝑌‘𝑖) ∈ (Base‘𝑅))) |
| 85 | 84 | imp 445 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑌‘𝑖) ∈ (Base‘𝑅)) |
| 86 | 14, 77, 78, 25, 79, 85 | gsummptif1n0 18365 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)))) = (𝑌‘𝑖)) |
| 87 | 20, 74, 86 | 3eqtrd 2660 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗)))) = (𝑌‘𝑖)) |
| 88 | 87 | mpteq2dva 4744 |
. 2
⊢ (𝜑 → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗))))) = (𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖))) |
| 89 | | ffn 6045 |
. . . . 5
⊢ (𝑌:𝑁⟶𝐵 → 𝑌 Fn 𝑁) |
| 90 | 41, 89 | syl6bi 243 |
. . . 4
⊢ (𝜑 → (𝑌 ∈ (𝐵 ↑𝑚 𝑁) → 𝑌 Fn 𝑁)) |
| 91 | 11, 90 | mpd 15 |
. . 3
⊢ (𝜑 → 𝑌 Fn 𝑁) |
| 92 | | eqcom 2629 |
. . . 4
⊢ ((𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖)) = 𝑌 ↔ 𝑌 = (𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖))) |
| 93 | | dffn5 6241 |
. . . 4
⊢ (𝑌 Fn 𝑁 ↔ 𝑌 = (𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖))) |
| 94 | 92, 93 | bitr4i 267 |
. . 3
⊢ ((𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖)) = 𝑌 ↔ 𝑌 Fn 𝑁) |
| 95 | 91, 94 | sylibr 224 |
. 2
⊢ (𝜑 → (𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖)) = 𝑌) |
| 96 | 12, 88, 95 | 3eqtrd 2660 |
1
⊢ (𝜑 →
((1r‘𝐴)
·
𝑌) = 𝑌) |