MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwcshid Structured version   Visualization version   GIF version

Theorem cshwcshid 13573
Description: A cyclically shifted word can be reconstructed by cyclically shifting it again. Lemma for erclwwlkssym 26935 and erclwwlksnsym 26947. (Contributed by AV, 8-Apr-2018.) (Revised by AV, 11-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.)
Hypotheses
Ref Expression
cshwcshid.1 (𝜑𝑦 ∈ Word 𝑉)
cshwcshid.2 (𝜑 → (#‘𝑥) = (#‘𝑦))
Assertion
Ref Expression
cshwcshid (𝜑 → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ∃𝑛 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
Distinct variable group:   𝑚,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚,𝑛)   𝑉(𝑥,𝑦,𝑚,𝑛)

Proof of Theorem cshwcshid
StepHypRef Expression
1 fznn0sub2 12446 . . . . . . 7 (𝑚 ∈ (0...(#‘𝑦)) → ((#‘𝑦) − 𝑚) ∈ (0...(#‘𝑦)))
2 oveq2 6658 . . . . . . . 8 ((#‘𝑥) = (#‘𝑦) → (0...(#‘𝑥)) = (0...(#‘𝑦)))
32eleq2d 2687 . . . . . . 7 ((#‘𝑥) = (#‘𝑦) → (((#‘𝑦) − 𝑚) ∈ (0...(#‘𝑥)) ↔ ((#‘𝑦) − 𝑚) ∈ (0...(#‘𝑦))))
41, 3syl5ibr 236 . . . . . 6 ((#‘𝑥) = (#‘𝑦) → (𝑚 ∈ (0...(#‘𝑦)) → ((#‘𝑦) − 𝑚) ∈ (0...(#‘𝑥))))
5 cshwcshid.2 . . . . . 6 (𝜑 → (#‘𝑥) = (#‘𝑦))
64, 5syl11 33 . . . . 5 (𝑚 ∈ (0...(#‘𝑦)) → (𝜑 → ((#‘𝑦) − 𝑚) ∈ (0...(#‘𝑥))))
76adantr 481 . . . 4 ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (𝜑 → ((#‘𝑦) − 𝑚) ∈ (0...(#‘𝑥))))
87impcom 446 . . 3 ((𝜑 ∧ (𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → ((#‘𝑦) − 𝑚) ∈ (0...(#‘𝑥)))
9 cshwcshid.1 . . . . . . . 8 (𝜑𝑦 ∈ Word 𝑉)
10 simpl 473 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(#‘𝑦))) → 𝑦 ∈ Word 𝑉)
11 elfzelz 12342 . . . . . . . . . 10 (𝑚 ∈ (0...(#‘𝑦)) → 𝑚 ∈ ℤ)
1211adantl 482 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(#‘𝑦))) → 𝑚 ∈ ℤ)
13 elfz2nn0 12431 . . . . . . . . . . 11 (𝑚 ∈ (0...(#‘𝑦)) ↔ (𝑚 ∈ ℕ0 ∧ (#‘𝑦) ∈ ℕ0𝑚 ≤ (#‘𝑦)))
14 nn0z 11400 . . . . . . . . . . . . 13 ((#‘𝑦) ∈ ℕ0 → (#‘𝑦) ∈ ℤ)
15 nn0z 11400 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
16 zsubcl 11419 . . . . . . . . . . . . 13 (((#‘𝑦) ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((#‘𝑦) − 𝑚) ∈ ℤ)
1714, 15, 16syl2anr 495 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (#‘𝑦) ∈ ℕ0) → ((#‘𝑦) − 𝑚) ∈ ℤ)
18173adant3 1081 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (#‘𝑦) ∈ ℕ0𝑚 ≤ (#‘𝑦)) → ((#‘𝑦) − 𝑚) ∈ ℤ)
1913, 18sylbi 207 . . . . . . . . . 10 (𝑚 ∈ (0...(#‘𝑦)) → ((#‘𝑦) − 𝑚) ∈ ℤ)
2019adantl 482 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(#‘𝑦))) → ((#‘𝑦) − 𝑚) ∈ ℤ)
2110, 12, 203jca 1242 . . . . . . . 8 ((𝑦 ∈ Word 𝑉𝑚 ∈ (0...(#‘𝑦))) → (𝑦 ∈ Word 𝑉𝑚 ∈ ℤ ∧ ((#‘𝑦) − 𝑚) ∈ ℤ))
229, 21sylan 488 . . . . . . 7 ((𝜑𝑚 ∈ (0...(#‘𝑦))) → (𝑦 ∈ Word 𝑉𝑚 ∈ ℤ ∧ ((#‘𝑦) − 𝑚) ∈ ℤ))
23 2cshw 13559 . . . . . . 7 ((𝑦 ∈ Word 𝑉𝑚 ∈ ℤ ∧ ((#‘𝑦) − 𝑚) ∈ ℤ) → ((𝑦 cyclShift 𝑚) cyclShift ((#‘𝑦) − 𝑚)) = (𝑦 cyclShift (𝑚 + ((#‘𝑦) − 𝑚))))
2422, 23syl 17 . . . . . 6 ((𝜑𝑚 ∈ (0...(#‘𝑦))) → ((𝑦 cyclShift 𝑚) cyclShift ((#‘𝑦) − 𝑚)) = (𝑦 cyclShift (𝑚 + ((#‘𝑦) − 𝑚))))
25 nn0cn 11302 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
26 nn0cn 11302 . . . . . . . . . . . 12 ((#‘𝑦) ∈ ℕ0 → (#‘𝑦) ∈ ℂ)
2725, 26anim12i 590 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (#‘𝑦) ∈ ℕ0) → (𝑚 ∈ ℂ ∧ (#‘𝑦) ∈ ℂ))
28273adant3 1081 . . . . . . . . . 10 ((𝑚 ∈ ℕ0 ∧ (#‘𝑦) ∈ ℕ0𝑚 ≤ (#‘𝑦)) → (𝑚 ∈ ℂ ∧ (#‘𝑦) ∈ ℂ))
2913, 28sylbi 207 . . . . . . . . 9 (𝑚 ∈ (0...(#‘𝑦)) → (𝑚 ∈ ℂ ∧ (#‘𝑦) ∈ ℂ))
30 pncan3 10289 . . . . . . . . 9 ((𝑚 ∈ ℂ ∧ (#‘𝑦) ∈ ℂ) → (𝑚 + ((#‘𝑦) − 𝑚)) = (#‘𝑦))
3129, 30syl 17 . . . . . . . 8 (𝑚 ∈ (0...(#‘𝑦)) → (𝑚 + ((#‘𝑦) − 𝑚)) = (#‘𝑦))
3231adantl 482 . . . . . . 7 ((𝜑𝑚 ∈ (0...(#‘𝑦))) → (𝑚 + ((#‘𝑦) − 𝑚)) = (#‘𝑦))
3332oveq2d 6666 . . . . . 6 ((𝜑𝑚 ∈ (0...(#‘𝑦))) → (𝑦 cyclShift (𝑚 + ((#‘𝑦) − 𝑚))) = (𝑦 cyclShift (#‘𝑦)))
34 cshwn 13543 . . . . . . . 8 (𝑦 ∈ Word 𝑉 → (𝑦 cyclShift (#‘𝑦)) = 𝑦)
359, 34syl 17 . . . . . . 7 (𝜑 → (𝑦 cyclShift (#‘𝑦)) = 𝑦)
3635adantr 481 . . . . . 6 ((𝜑𝑚 ∈ (0...(#‘𝑦))) → (𝑦 cyclShift (#‘𝑦)) = 𝑦)
3724, 33, 363eqtrrd 2661 . . . . 5 ((𝜑𝑚 ∈ (0...(#‘𝑦))) → 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((#‘𝑦) − 𝑚)))
3837adantrr 753 . . . 4 ((𝜑 ∧ (𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((#‘𝑦) − 𝑚)))
39 oveq1 6657 . . . . . . 7 (𝑥 = (𝑦 cyclShift 𝑚) → (𝑥 cyclShift ((#‘𝑦) − 𝑚)) = ((𝑦 cyclShift 𝑚) cyclShift ((#‘𝑦) − 𝑚)))
4039eqeq2d 2632 . . . . . 6 (𝑥 = (𝑦 cyclShift 𝑚) → (𝑦 = (𝑥 cyclShift ((#‘𝑦) − 𝑚)) ↔ 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((#‘𝑦) − 𝑚))))
4140adantl 482 . . . . 5 ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (𝑦 = (𝑥 cyclShift ((#‘𝑦) − 𝑚)) ↔ 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((#‘𝑦) − 𝑚))))
4241adantl 482 . . . 4 ((𝜑 ∧ (𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → (𝑦 = (𝑥 cyclShift ((#‘𝑦) − 𝑚)) ↔ 𝑦 = ((𝑦 cyclShift 𝑚) cyclShift ((#‘𝑦) − 𝑚))))
4338, 42mpbird 247 . . 3 ((𝜑 ∧ (𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → 𝑦 = (𝑥 cyclShift ((#‘𝑦) − 𝑚)))
44 oveq2 6658 . . . . 5 (𝑛 = ((#‘𝑦) − 𝑚) → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift ((#‘𝑦) − 𝑚)))
4544eqeq2d 2632 . . . 4 (𝑛 = ((#‘𝑦) − 𝑚) → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift ((#‘𝑦) − 𝑚))))
4645rspcev 3309 . . 3 ((((#‘𝑦) − 𝑚) ∈ (0...(#‘𝑥)) ∧ 𝑦 = (𝑥 cyclShift ((#‘𝑦) − 𝑚))) → ∃𝑛 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))
478, 43, 46syl2anc 693 . 2 ((𝜑 ∧ (𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))) → ∃𝑛 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))
4847ex 450 1 (𝜑 → ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ∃𝑛 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936   + caddc 9939  cle 10075  cmin 10266  0cn0 11292  cz 11377  ...cfz 12326  #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535
This theorem is referenced by:  erclwwlkssym  26935  erclwwlksnsym  26947
  Copyright terms: Public domain W3C validator