MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrccatid Structured version   Visualization version   GIF version

Theorem estrccatid 16772
Description: Lemma for estrccat 16773. (Contributed by AV, 8-Mar-2020.)
Hypothesis
Ref Expression
estrccat.c 𝐶 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
estrccatid (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝑈 ↦ ( I ↾ (Base‘𝑥)))))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑈   𝑥,𝑉

Proof of Theorem estrccatid
Dummy variables 𝑓 𝑔 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 estrccat.c . . 3 𝐶 = (ExtStrCat‘𝑈)
2 id 22 . . 3 (𝑈𝑉𝑈𝑉)
31, 2estrcbas 16765 . 2 (𝑈𝑉𝑈 = (Base‘𝐶))
4 eqidd 2623 . 2 (𝑈𝑉 → (Hom ‘𝐶) = (Hom ‘𝐶))
5 eqidd 2623 . 2 (𝑈𝑉 → (comp‘𝐶) = (comp‘𝐶))
6 fvex 6201 . . . 4 (ExtStrCat‘𝑈) ∈ V
71, 6eqeltri 2697 . . 3 𝐶 ∈ V
87a1i 11 . 2 (𝑈𝑉𝐶 ∈ V)
9 biid 251 . 2 (((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))) ↔ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧))))
10 f1oi 6174 . . . 4 ( I ↾ (Base‘𝑥)):(Base‘𝑥)–1-1-onto→(Base‘𝑥)
11 f1of 6137 . . . 4 (( I ↾ (Base‘𝑥)):(Base‘𝑥)–1-1-onto→(Base‘𝑥) → ( I ↾ (Base‘𝑥)):(Base‘𝑥)⟶(Base‘𝑥))
1210, 11mp1i 13 . . 3 ((𝑈𝑉𝑥𝑈) → ( I ↾ (Base‘𝑥)):(Base‘𝑥)⟶(Base‘𝑥))
13 simpl 473 . . . 4 ((𝑈𝑉𝑥𝑈) → 𝑈𝑉)
14 eqid 2622 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
15 simpr 477 . . . 4 ((𝑈𝑉𝑥𝑈) → 𝑥𝑈)
16 eqid 2622 . . . 4 (Base‘𝑥) = (Base‘𝑥)
171, 13, 14, 15, 15, 16, 16elestrchom 16768 . . 3 ((𝑈𝑉𝑥𝑈) → (( I ↾ (Base‘𝑥)) ∈ (𝑥(Hom ‘𝐶)𝑥) ↔ ( I ↾ (Base‘𝑥)):(Base‘𝑥)⟶(Base‘𝑥)))
1812, 17mpbird 247 . 2 ((𝑈𝑉𝑥𝑈) → ( I ↾ (Base‘𝑥)) ∈ (𝑥(Hom ‘𝐶)𝑥))
19 simpl 473 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑈𝑉)
20 eqid 2622 . . . 4 (comp‘𝐶) = (comp‘𝐶)
21 simpr1l 1118 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑤𝑈)
22 simpr1r 1119 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥𝑈)
23 eqid 2622 . . . 4 (Base‘𝑤) = (Base‘𝑤)
24 simpr31 1151 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥))
251, 19, 14, 21, 22, 23, 16elestrchom 16768 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ↔ 𝑓:(Base‘𝑤)⟶(Base‘𝑥)))
2624, 25mpbid 222 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓:(Base‘𝑤)⟶(Base‘𝑥))
2710, 11mp1i 13 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ( I ↾ (Base‘𝑥)):(Base‘𝑥)⟶(Base‘𝑥))
281, 19, 20, 21, 22, 22, 23, 16, 16, 26, 27estrcco 16770 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = (( I ↾ (Base‘𝑥)) ∘ 𝑓))
29 fcoi2 6079 . . . 4 (𝑓:(Base‘𝑤)⟶(Base‘𝑥) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)
3026, 29syl 17 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥)) ∘ 𝑓) = 𝑓)
3128, 30eqtrd 2656 . 2 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (( I ↾ (Base‘𝑥))(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
32 simpr2l 1120 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦𝑈)
33 eqid 2622 . . . 4 (Base‘𝑦) = (Base‘𝑦)
34 simpr32 1152 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
351, 19, 14, 22, 32, 16, 33elestrchom 16768 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑔:(Base‘𝑥)⟶(Base‘𝑦)))
3634, 35mpbid 222 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔:(Base‘𝑥)⟶(Base‘𝑦))
371, 19, 20, 22, 22, 32, 16, 16, 33, 27, 36estrcco 16770 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = (𝑔 ∘ ( I ↾ (Base‘𝑥))))
38 fcoi1 6078 . . . 4 (𝑔:(Base‘𝑥)⟶(Base‘𝑦) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔)
3936, 38syl 17 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔 ∘ ( I ↾ (Base‘𝑥))) = 𝑔)
4037, 39eqtrd 2656 . 2 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)( I ↾ (Base‘𝑥))) = 𝑔)
411, 19, 20, 21, 22, 32, 23, 16, 33, 26, 36estrcco 16770 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) = (𝑔𝑓))
42 fco 6058 . . . . 5 ((𝑔:(Base‘𝑥)⟶(Base‘𝑦) ∧ 𝑓:(Base‘𝑤)⟶(Base‘𝑥)) → (𝑔𝑓):(Base‘𝑤)⟶(Base‘𝑦))
4336, 26, 42syl2anc 693 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔𝑓):(Base‘𝑤)⟶(Base‘𝑦))
441, 19, 14, 21, 32, 23, 33elestrchom 16768 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦) ↔ (𝑔𝑓):(Base‘𝑤)⟶(Base‘𝑦)))
4543, 44mpbird 247 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦))
4641, 45eqeltrd 2701 . 2 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓) ∈ (𝑤(Hom ‘𝐶)𝑦))
47 coass 5654 . . . 4 ((𝑔) ∘ 𝑓) = ( ∘ (𝑔𝑓))
48 simpr2r 1121 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧𝑈)
49 eqid 2622 . . . . 5 (Base‘𝑧) = (Base‘𝑧)
50 simpr33 1153 . . . . . . 7 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ∈ (𝑦(Hom ‘𝐶)𝑧))
511, 19, 14, 32, 48, 33, 49elestrchom 16768 . . . . . . 7 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ( ∈ (𝑦(Hom ‘𝐶)𝑧) ↔ :(Base‘𝑦)⟶(Base‘𝑧)))
5250, 51mpbid 222 . . . . . 6 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → :(Base‘𝑦)⟶(Base‘𝑧))
53 fco 6058 . . . . . 6 ((:(Base‘𝑦)⟶(Base‘𝑧) ∧ 𝑔:(Base‘𝑥)⟶(Base‘𝑦)) → (𝑔):(Base‘𝑥)⟶(Base‘𝑧))
5452, 36, 53syl2anc 693 . . . . 5 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔):(Base‘𝑥)⟶(Base‘𝑧))
551, 19, 20, 21, 22, 48, 23, 16, 49, 26, 54estrcco 16770 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((𝑔) ∘ 𝑓))
561, 19, 20, 21, 32, 48, 23, 33, 49, 43, 52estrcco 16770 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)) = ( ∘ (𝑔𝑓)))
5747, 55, 563eqtr4a 2682 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)))
581, 19, 20, 22, 32, 48, 16, 33, 49, 36, 52estrcco 16770 . . . 4 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) = (𝑔))
5958oveq1d 6665 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓))
6041oveq2d 6666 . . 3 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔𝑓)))
6157, 59, 603eqtr4d 2666 . 2 ((𝑈𝑉 ∧ ((𝑤𝑈𝑥𝑈) ∧ (𝑦𝑈𝑧𝑈) ∧ (𝑓 ∈ (𝑤(Hom ‘𝐶)𝑥) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔)(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑤, 𝑦⟩(comp‘𝐶)𝑧)(𝑔(⟨𝑤, 𝑥⟩(comp‘𝐶)𝑦)𝑓)))
623, 4, 5, 8, 9, 18, 31, 40, 46, 61iscatd2 16342 1 (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝑈 ↦ ( I ↾ (Base‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183  cmpt 4729   I cid 5023  cres 5116  ccom 5118  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Idccid 16326  ExtStrCatcestrc 16762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-estrc 16763
This theorem is referenced by:  estrccat  16773  estrcid  16774
  Copyright terms: Public domain W3C validator