Proof of Theorem etransclem3
| Step | Hyp | Ref
| Expression |
| 1 | | 0zd 11389 |
. 2
⊢ ((𝜑 ∧ 𝑃 < (𝐶‘𝐽)) → 0 ∈ ℤ) |
| 2 | | 0zd 11389 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 0 ∈ ℤ) |
| 3 | | etransclem3.n |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 4 | 3 | nnzd 11481 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 5 | 4 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 𝑃 ∈ ℤ) |
| 6 | | etransclem3.c |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) |
| 7 | | etransclem3.j |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
| 8 | 6, 7 | ffvelrnd 6360 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶‘𝐽) ∈ (0...𝑁)) |
| 9 | 8 | elfzelzd 39530 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶‘𝐽) ∈ ℤ) |
| 10 | 4, 9 | zsubcld 11487 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 − (𝐶‘𝐽)) ∈ ℤ) |
| 11 | 10 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ ℤ) |
| 12 | 2, 5, 11 | 3jca 1242 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶‘𝐽)) ∈ ℤ)) |
| 13 | 9 | zred 11482 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶‘𝐽) ∈ ℝ) |
| 14 | 13 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐶‘𝐽) ∈ ℝ) |
| 15 | 5 | zred 11482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 𝑃 ∈ ℝ) |
| 16 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ¬ 𝑃 < (𝐶‘𝐽)) |
| 17 | 14, 15, 16 | nltled 10187 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐶‘𝐽) ≤ 𝑃) |
| 18 | 15, 14 | subge0d 10617 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (0 ≤ (𝑃 − (𝐶‘𝐽)) ↔ (𝐶‘𝐽) ≤ 𝑃)) |
| 19 | 17, 18 | mpbird 247 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → 0 ≤ (𝑃 − (𝐶‘𝐽))) |
| 20 | | elfzle1 12344 |
. . . . . . . . . 10
⊢ ((𝐶‘𝐽) ∈ (0...𝑁) → 0 ≤ (𝐶‘𝐽)) |
| 21 | 8, 20 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (𝐶‘𝐽)) |
| 22 | 3 | nnred 11035 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 23 | 22, 13 | subge02d 10619 |
. . . . . . . . 9
⊢ (𝜑 → (0 ≤ (𝐶‘𝐽) ↔ (𝑃 − (𝐶‘𝐽)) ≤ 𝑃)) |
| 24 | 21, 23 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 − (𝐶‘𝐽)) ≤ 𝑃) |
| 25 | 24 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ≤ 𝑃) |
| 26 | 12, 19, 25 | jca32 558 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶‘𝐽)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐶‘𝐽)) ∧ (𝑃 − (𝐶‘𝐽)) ≤ 𝑃))) |
| 27 | | elfz2 12333 |
. . . . . 6
⊢ ((𝑃 − (𝐶‘𝐽)) ∈ (0...𝑃) ↔ ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶‘𝐽)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐶‘𝐽)) ∧ (𝑃 − (𝐶‘𝐽)) ≤ 𝑃))) |
| 28 | 26, 27 | sylibr 224 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈ (0...𝑃)) |
| 29 | | permnn 13113 |
. . . . 5
⊢ ((𝑃 − (𝐶‘𝐽)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℕ) |
| 30 | 28, 29 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℕ) |
| 31 | 30 | nnzd 11481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) ∈ ℤ) |
| 32 | | etransclem3.4 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 33 | 7 | elfzelzd 39530 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 34 | 32, 33 | zsubcld 11487 |
. . . . 5
⊢ (𝜑 → (𝐾 − 𝐽) ∈ ℤ) |
| 35 | 34 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝐾 − 𝐽) ∈ ℤ) |
| 36 | | elnn0z 11390 |
. . . . 5
⊢ ((𝑃 − (𝐶‘𝐽)) ∈ ℕ0 ↔ ((𝑃 − (𝐶‘𝐽)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶‘𝐽)))) |
| 37 | 11, 19, 36 | sylanbrc 698 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (𝑃 − (𝐶‘𝐽)) ∈
ℕ0) |
| 38 | | zexpcl 12875 |
. . . 4
⊢ (((𝐾 − 𝐽) ∈ ℤ ∧ (𝑃 − (𝐶‘𝐽)) ∈ ℕ0) →
((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))) ∈ ℤ) |
| 39 | 35, 37, 38 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))) ∈ ℤ) |
| 40 | 31, 39 | zmulcld 11488 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑃 < (𝐶‘𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽)))) ∈ ℤ) |
| 41 | 1, 40 | ifclda 4120 |
1
⊢ (𝜑 → if(𝑃 < (𝐶‘𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))))) ∈ ℤ) |