![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eulerth | Structured version Visualization version GIF version |
Description: Euler's theorem, a generalization of Fermat's little theorem. If 𝐴 and 𝑁 are coprime, then 𝐴↑ϕ(𝑁)≡1 (mod 𝑁). This is Metamath 100 proof #10. Also called Euler-Fermat theorem, see theorem 5.17 in [ApostolNT] p. 113. (Contributed by Mario Carneiro, 28-Feb-2014.) |
Ref | Expression |
---|---|
eulerth | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phicl 15474 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ) | |
2 | 1 | nnnn0d 11351 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ0) |
3 | hashfz1 13134 | . . . . . . 7 ⊢ ((ϕ‘𝑁) ∈ ℕ0 → (#‘(1...(ϕ‘𝑁))) = (ϕ‘𝑁)) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (#‘(1...(ϕ‘𝑁))) = (ϕ‘𝑁)) |
5 | dfphi2 15479 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (#‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})) | |
6 | 4, 5 | eqtrd 2656 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (#‘(1...(ϕ‘𝑁))) = (#‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})) |
7 | 6 | 3ad2ant1 1082 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (#‘(1...(ϕ‘𝑁))) = (#‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})) |
8 | fzfi 12771 | . . . . 5 ⊢ (1...(ϕ‘𝑁)) ∈ Fin | |
9 | fzofi 12773 | . . . . . 6 ⊢ (0..^𝑁) ∈ Fin | |
10 | ssrab2 3687 | . . . . . 6 ⊢ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ⊆ (0..^𝑁) | |
11 | ssfi 8180 | . . . . . 6 ⊢ (((0..^𝑁) ∈ Fin ∧ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ⊆ (0..^𝑁)) → {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin) | |
12 | 9, 10, 11 | mp2an 708 | . . . . 5 ⊢ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin |
13 | hashen 13135 | . . . . 5 ⊢ (((1...(ϕ‘𝑁)) ∈ Fin ∧ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin) → ((#‘(1...(ϕ‘𝑁))) = (#‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) ↔ (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})) | |
14 | 8, 12, 13 | mp2an 708 | . . . 4 ⊢ ((#‘(1...(ϕ‘𝑁))) = (#‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) ↔ (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) |
15 | 7, 14 | sylib 208 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) |
16 | bren 7964 | . . 3 ⊢ ((1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ↔ ∃𝑓 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) | |
17 | 15, 16 | sylib 208 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ∃𝑓 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) |
18 | simpl 473 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) | |
19 | oveq1 6657 | . . . . 5 ⊢ (𝑘 = 𝑦 → (𝑘 gcd 𝑁) = (𝑦 gcd 𝑁)) | |
20 | 19 | eqeq1d 2624 | . . . 4 ⊢ (𝑘 = 𝑦 → ((𝑘 gcd 𝑁) = 1 ↔ (𝑦 gcd 𝑁) = 1)) |
21 | 20 | cbvrabv 3199 | . . 3 ⊢ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} |
22 | eqid 2622 | . . 3 ⊢ (1...(ϕ‘𝑁)) = (1...(ϕ‘𝑁)) | |
23 | simpr 477 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) | |
24 | fveq2 6191 | . . . . . 6 ⊢ (𝑘 = 𝑥 → (𝑓‘𝑘) = (𝑓‘𝑥)) | |
25 | 24 | oveq2d 6666 | . . . . 5 ⊢ (𝑘 = 𝑥 → (𝐴 · (𝑓‘𝑘)) = (𝐴 · (𝑓‘𝑥))) |
26 | 25 | oveq1d 6665 | . . . 4 ⊢ (𝑘 = 𝑥 → ((𝐴 · (𝑓‘𝑘)) mod 𝑁) = ((𝐴 · (𝑓‘𝑥)) mod 𝑁)) |
27 | 26 | cbvmptv 4750 | . . 3 ⊢ (𝑘 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝑓‘𝑘)) mod 𝑁)) = (𝑥 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝑓‘𝑥)) mod 𝑁)) |
28 | 18, 21, 22, 23, 27 | eulerthlem2 15487 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) |
29 | 17, 28 | exlimddv 1863 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∃wex 1704 ∈ wcel 1990 {crab 2916 ⊆ wss 3574 class class class wbr 4653 ↦ cmpt 4729 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 ≈ cen 7952 Fincfn 7955 0cc0 9936 1c1 9937 · cmul 9941 ℕcn 11020 ℕ0cn0 11292 ℤcz 11377 ...cfz 12326 ..^cfzo 12465 mod cmo 12668 ↑cexp 12860 #chash 13117 gcd cgcd 15216 ϕcphi 15469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-phi 15471 |
This theorem is referenced by: fermltl 15489 prmdiv 15490 odzcllem 15497 odzphi 15501 vfermltl 15506 lgslem1 25022 lgsqrlem2 25072 |
Copyright terms: Public domain | W3C validator |