![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expnlbnd | Structured version Visualization version GIF version |
Description: The reciprocal of exponentiation with a mantissa greater than 1 has no lower bound. (Contributed by NM, 18-Jul-2008.) |
Ref | Expression |
---|---|
expnlbnd | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 11839 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rpne0 11848 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
3 | 1, 2 | rereccld 10852 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ) |
4 | expnbnd 12993 | . . 3 ⊢ (((1 / 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵↑𝑘)) | |
5 | 3, 4 | syl3an1 1359 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵↑𝑘)) |
6 | rpregt0 11846 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
7 | 6 | 3ad2ant1 1082 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
8 | 7 | adantr 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
9 | nnnn0 11299 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
10 | reexpcl 12877 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵↑𝑘) ∈ ℝ) | |
11 | 9, 10 | sylan2 491 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝐵↑𝑘) ∈ ℝ) |
12 | 11 | adantlr 751 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → (𝐵↑𝑘) ∈ ℝ) |
13 | simpll 790 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ) | |
14 | nnz 11399 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
15 | 14 | adantl 482 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ) |
16 | 0lt1 10550 | . . . . . . . . . 10 ⊢ 0 < 1 | |
17 | 0re 10040 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
18 | 1re 10039 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
19 | lttr 10114 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵)) | |
20 | 17, 18, 19 | mp3an12 1414 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵)) |
21 | 16, 20 | mpani 712 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵)) |
22 | 21 | imp 445 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵) |
23 | 22 | adantr 481 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < 𝐵) |
24 | expgt0 12893 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵↑𝑘)) | |
25 | 13, 15, 23, 24 | syl3anc 1326 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → 0 < (𝐵↑𝑘)) |
26 | 12, 25 | jca 554 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵↑𝑘) ∈ ℝ ∧ 0 < (𝐵↑𝑘))) |
27 | 26 | 3adantl1 1217 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((𝐵↑𝑘) ∈ ℝ ∧ 0 < (𝐵↑𝑘))) |
28 | ltrec1 10910 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ ((𝐵↑𝑘) ∈ ℝ ∧ 0 < (𝐵↑𝑘))) → ((1 / 𝐴) < (𝐵↑𝑘) ↔ (1 / (𝐵↑𝑘)) < 𝐴)) | |
29 | 8, 27, 28 | syl2anc 693 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑘 ∈ ℕ) → ((1 / 𝐴) < (𝐵↑𝑘) ↔ (1 / (𝐵↑𝑘)) < 𝐴)) |
30 | 29 | rexbidva 3049 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (∃𝑘 ∈ ℕ (1 / 𝐴) < (𝐵↑𝑘) ↔ ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴)) |
31 | 5, 30 | mpbid 222 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 ∈ wcel 1990 ∃wrex 2913 class class class wbr 4653 (class class class)co 6650 ℝcr 9935 0cc0 9936 1c1 9937 < clt 10074 / cdiv 10684 ℕcn 11020 ℕ0cn0 11292 ℤcz 11377 ℝ+crp 11832 ↑cexp 12860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fl 12593 df-seq 12802 df-exp 12861 |
This theorem is referenced by: expnlbnd2 12995 opnmbllem 23369 opnmbllem0 33445 heiborlem7 33616 |
Copyright terms: Public domain | W3C validator |