Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtno5faclem1 Structured version   Visualization version   GIF version

Theorem fmtno5faclem1 41491
Description: Lemma 1 for fmtno5fac 41494. (Contributed by AV, 22-Jul-2021.)
Assertion
Ref Expression
fmtno5faclem1 (6700417 · 4) = 26801668

Proof of Theorem fmtno5faclem1
StepHypRef Expression
1 4nn0 11311 . 2 4 ∈ ℕ0
2 6nn0 11313 . . . . . . 7 6 ∈ ℕ0
3 7nn0 11314 . . . . . . 7 7 ∈ ℕ0
42, 3deccl 11512 . . . . . 6 67 ∈ ℕ0
5 0nn0 11307 . . . . . 6 0 ∈ ℕ0
64, 5deccl 11512 . . . . 5 670 ∈ ℕ0
76, 5deccl 11512 . . . 4 6700 ∈ ℕ0
87, 1deccl 11512 . . 3 67004 ∈ ℕ0
9 1nn0 11308 . . 3 1 ∈ ℕ0
108, 9deccl 11512 . 2 670041 ∈ ℕ0
11 eqid 2622 . 2 6700417 = 6700417
12 8nn0 11315 . 2 8 ∈ ℕ0
13 2nn0 11309 . 2 2 ∈ ℕ0
1413, 2deccl 11512 . . . . . . 7 26 ∈ ℕ0
1514, 12deccl 11512 . . . . . 6 268 ∈ ℕ0
1615, 5deccl 11512 . . . . 5 2680 ∈ ℕ0
1716, 9deccl 11512 . . . 4 26801 ∈ ℕ0
1817, 2deccl 11512 . . 3 268016 ∈ ℕ0
19 eqid 2622 . . . 4 670041 = 670041
20 eqid 2622 . . . . 5 67004 = 67004
21 eqid 2622 . . . . . . 7 6700 = 6700
22 eqid 2622 . . . . . . . 8 670 = 670
23 eqid 2622 . . . . . . . . 9 67 = 67
24 6t4e24 11643 . . . . . . . . . 10 (6 · 4) = 24
25 4p2e6 11162 . . . . . . . . . 10 (4 + 2) = 6
2613, 1, 13, 24, 25decaddi 11579 . . . . . . . . 9 ((6 · 4) + 2) = 26
27 7t4e28 11650 . . . . . . . . 9 (7 · 4) = 28
281, 2, 3, 23, 12, 13, 26, 27decmul1c 11587 . . . . . . . 8 (67 · 4) = 268
29 4cn 11098 . . . . . . . . 9 4 ∈ ℂ
3029mul02i 10225 . . . . . . . 8 (0 · 4) = 0
311, 4, 5, 22, 5, 28, 30decmul1 11585 . . . . . . 7 (670 · 4) = 2680
321, 6, 5, 21, 5, 31, 30decmul1 11585 . . . . . 6 (6700 · 4) = 26800
33 0p1e1 11132 . . . . . 6 (0 + 1) = 1
3416, 5, 9, 32, 33decaddi 11579 . . . . 5 ((6700 · 4) + 1) = 26801
35 4t4e16 11633 . . . . 5 (4 · 4) = 16
361, 7, 1, 20, 2, 9, 34, 35decmul1c 11587 . . . 4 (67004 · 4) = 268016
3729mulid2i 10043 . . . 4 (1 · 4) = 4
381, 8, 9, 19, 1, 36, 37decmul1 11585 . . 3 (670041 · 4) = 2680164
3918, 1, 13, 38, 25decaddi 11579 . 2 ((670041 · 4) + 2) = 2680166
401, 10, 3, 11, 12, 13, 39, 27decmul1c 11587 1 (6700417 · 4) = 26801668
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  (class class class)co 6650  0cc0 9936  1c1 9937   · cmul 9941  2c2 11070  4c4 11072  6c6 11074  7c7 11075  8c8 11076  cdc 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-dec 11494
This theorem is referenced by:  fmtno5fac  41494
  Copyright terms: Public domain W3C validator