| Step | Hyp | Ref
| Expression |
| 1 | | fmul01.6 |
. 2
⊢ (𝜑 → 𝐾 ∈ (𝐿...𝑀)) |
| 2 | | fveq2 6191 |
. . . . . 6
⊢ (𝑘 = 𝐿 → (𝐴‘𝑘) = (𝐴‘𝐿)) |
| 3 | 2 | breq2d 4665 |
. . . . 5
⊢ (𝑘 = 𝐿 → (0 ≤ (𝐴‘𝑘) ↔ 0 ≤ (𝐴‘𝐿))) |
| 4 | 2 | breq1d 4663 |
. . . . 5
⊢ (𝑘 = 𝐿 → ((𝐴‘𝑘) ≤ 1 ↔ (𝐴‘𝐿) ≤ 1)) |
| 5 | 3, 4 | anbi12d 747 |
. . . 4
⊢ (𝑘 = 𝐿 → ((0 ≤ (𝐴‘𝑘) ∧ (𝐴‘𝑘) ≤ 1) ↔ (0 ≤ (𝐴‘𝐿) ∧ (𝐴‘𝐿) ≤ 1))) |
| 6 | 5 | imbi2d 330 |
. . 3
⊢ (𝑘 = 𝐿 → ((𝜑 → (0 ≤ (𝐴‘𝑘) ∧ (𝐴‘𝑘) ≤ 1)) ↔ (𝜑 → (0 ≤ (𝐴‘𝐿) ∧ (𝐴‘𝐿) ≤ 1)))) |
| 7 | | fveq2 6191 |
. . . . . 6
⊢ (𝑘 = 𝑗 → (𝐴‘𝑘) = (𝐴‘𝑗)) |
| 8 | 7 | breq2d 4665 |
. . . . 5
⊢ (𝑘 = 𝑗 → (0 ≤ (𝐴‘𝑘) ↔ 0 ≤ (𝐴‘𝑗))) |
| 9 | 7 | breq1d 4663 |
. . . . 5
⊢ (𝑘 = 𝑗 → ((𝐴‘𝑘) ≤ 1 ↔ (𝐴‘𝑗) ≤ 1)) |
| 10 | 8, 9 | anbi12d 747 |
. . . 4
⊢ (𝑘 = 𝑗 → ((0 ≤ (𝐴‘𝑘) ∧ (𝐴‘𝑘) ≤ 1) ↔ (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1))) |
| 11 | 10 | imbi2d 330 |
. . 3
⊢ (𝑘 = 𝑗 → ((𝜑 → (0 ≤ (𝐴‘𝑘) ∧ (𝐴‘𝑘) ≤ 1)) ↔ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)))) |
| 12 | | fveq2 6191 |
. . . . . 6
⊢ (𝑘 = (𝑗 + 1) → (𝐴‘𝑘) = (𝐴‘(𝑗 + 1))) |
| 13 | 12 | breq2d 4665 |
. . . . 5
⊢ (𝑘 = (𝑗 + 1) → (0 ≤ (𝐴‘𝑘) ↔ 0 ≤ (𝐴‘(𝑗 + 1)))) |
| 14 | 12 | breq1d 4663 |
. . . . 5
⊢ (𝑘 = (𝑗 + 1) → ((𝐴‘𝑘) ≤ 1 ↔ (𝐴‘(𝑗 + 1)) ≤ 1)) |
| 15 | 13, 14 | anbi12d 747 |
. . . 4
⊢ (𝑘 = (𝑗 + 1) → ((0 ≤ (𝐴‘𝑘) ∧ (𝐴‘𝑘) ≤ 1) ↔ (0 ≤ (𝐴‘(𝑗 + 1)) ∧ (𝐴‘(𝑗 + 1)) ≤ 1))) |
| 16 | 15 | imbi2d 330 |
. . 3
⊢ (𝑘 = (𝑗 + 1) → ((𝜑 → (0 ≤ (𝐴‘𝑘) ∧ (𝐴‘𝑘) ≤ 1)) ↔ (𝜑 → (0 ≤ (𝐴‘(𝑗 + 1)) ∧ (𝐴‘(𝑗 + 1)) ≤ 1)))) |
| 17 | | fveq2 6191 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝐴‘𝑘) = (𝐴‘𝐾)) |
| 18 | 17 | breq2d 4665 |
. . . . 5
⊢ (𝑘 = 𝐾 → (0 ≤ (𝐴‘𝑘) ↔ 0 ≤ (𝐴‘𝐾))) |
| 19 | 17 | breq1d 4663 |
. . . . 5
⊢ (𝑘 = 𝐾 → ((𝐴‘𝑘) ≤ 1 ↔ (𝐴‘𝐾) ≤ 1)) |
| 20 | 18, 19 | anbi12d 747 |
. . . 4
⊢ (𝑘 = 𝐾 → ((0 ≤ (𝐴‘𝑘) ∧ (𝐴‘𝑘) ≤ 1) ↔ (0 ≤ (𝐴‘𝐾) ∧ (𝐴‘𝐾) ≤ 1))) |
| 21 | 20 | imbi2d 330 |
. . 3
⊢ (𝑘 = 𝐾 → ((𝜑 → (0 ≤ (𝐴‘𝑘) ∧ (𝐴‘𝑘) ≤ 1)) ↔ (𝜑 → (0 ≤ (𝐴‘𝐾) ∧ (𝐴‘𝐾) ≤ 1)))) |
| 22 | | fmul01.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ ℤ) |
| 23 | 22 | zred 11482 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 24 | 23 | leidd 10594 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ≤ 𝐿) |
| 25 | | fmul01.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐿)) |
| 26 | | eluzelz 11697 |
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘𝐿) → 𝑀 ∈ ℤ) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 28 | | eluz 11701 |
. . . . . . . . . 10
⊢ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ∈
(ℤ≥‘𝐿) ↔ 𝐿 ≤ 𝑀)) |
| 29 | 22, 27, 28 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ∈ (ℤ≥‘𝐿) ↔ 𝐿 ≤ 𝑀)) |
| 30 | 25, 29 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ≤ 𝑀) |
| 31 | | elfz 12332 |
. . . . . . . . 9
⊢ ((𝐿 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿 ∈ (𝐿...𝑀) ↔ (𝐿 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀))) |
| 32 | 22, 22, 27, 31 | syl3anc 1326 |
. . . . . . . 8
⊢ (𝜑 → (𝐿 ∈ (𝐿...𝑀) ↔ (𝐿 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀))) |
| 33 | 24, 30, 32 | mpbir2and 957 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ (𝐿...𝑀)) |
| 34 | 33 | ancli 574 |
. . . . . . 7
⊢ (𝜑 → (𝜑 ∧ 𝐿 ∈ (𝐿...𝑀))) |
| 35 | | fmul01.2 |
. . . . . . . . . 10
⊢
Ⅎ𝑖𝜑 |
| 36 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑖 𝐿 ∈ (𝐿...𝑀) |
| 37 | 35, 36 | nfan 1828 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) |
| 38 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑖0 |
| 39 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑖
≤ |
| 40 | | fmul01.1 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖𝐵 |
| 41 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖𝐿 |
| 42 | 40, 41 | nffv 6198 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(𝐵‘𝐿) |
| 43 | 38, 39, 42 | nfbr 4699 |
. . . . . . . . 9
⊢
Ⅎ𝑖0 ≤
(𝐵‘𝐿) |
| 44 | 37, 43 | nfim 1825 |
. . . . . . . 8
⊢
Ⅎ𝑖((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝐿)) |
| 45 | | eleq1 2689 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐿 → (𝑖 ∈ (𝐿...𝑀) ↔ 𝐿 ∈ (𝐿...𝑀))) |
| 46 | 45 | anbi2d 740 |
. . . . . . . . 9
⊢ (𝑖 = 𝐿 → ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) ↔ (𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)))) |
| 47 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐿 → (𝐵‘𝑖) = (𝐵‘𝐿)) |
| 48 | 47 | breq2d 4665 |
. . . . . . . . 9
⊢ (𝑖 = 𝐿 → (0 ≤ (𝐵‘𝑖) ↔ 0 ≤ (𝐵‘𝐿))) |
| 49 | 46, 48 | imbi12d 334 |
. . . . . . . 8
⊢ (𝑖 = 𝐿 → (((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) ↔ ((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝐿)))) |
| 50 | | fmul01.8 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
| 51 | 44, 49, 50 | vtoclg1f 3265 |
. . . . . . 7
⊢ (𝐿 ∈ (𝐿...𝑀) → ((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝐿))) |
| 52 | 33, 34, 51 | sylc 65 |
. . . . . 6
⊢ (𝜑 → 0 ≤ (𝐵‘𝐿)) |
| 53 | | fmul01.3 |
. . . . . . . 8
⊢ 𝐴 = seq𝐿( · , 𝐵) |
| 54 | 53 | fveq1i 6192 |
. . . . . . 7
⊢ (𝐴‘𝐿) = (seq𝐿( · , 𝐵)‘𝐿) |
| 55 | | seq1 12814 |
. . . . . . . 8
⊢ (𝐿 ∈ ℤ → (seq𝐿( · , 𝐵)‘𝐿) = (𝐵‘𝐿)) |
| 56 | 22, 55 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (seq𝐿( · , 𝐵)‘𝐿) = (𝐵‘𝐿)) |
| 57 | 54, 56 | syl5eq 2668 |
. . . . . 6
⊢ (𝜑 → (𝐴‘𝐿) = (𝐵‘𝐿)) |
| 58 | 52, 57 | breqtrrd 4681 |
. . . . 5
⊢ (𝜑 → 0 ≤ (𝐴‘𝐿)) |
| 59 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑖1 |
| 60 | 42, 39, 59 | nfbr 4699 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝐵‘𝐿) ≤ 1 |
| 61 | 37, 60 | nfim 1825 |
. . . . . . . 8
⊢
Ⅎ𝑖((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → (𝐵‘𝐿) ≤ 1) |
| 62 | 47 | breq1d 4663 |
. . . . . . . . 9
⊢ (𝑖 = 𝐿 → ((𝐵‘𝑖) ≤ 1 ↔ (𝐵‘𝐿) ≤ 1)) |
| 63 | 46, 62 | imbi12d 334 |
. . . . . . . 8
⊢ (𝑖 = 𝐿 → (((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) ↔ ((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → (𝐵‘𝐿) ≤ 1))) |
| 64 | | fmul01.9 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) |
| 65 | 61, 63, 64 | vtoclg1f 3265 |
. . . . . . 7
⊢ (𝐿 ∈ (𝐿...𝑀) → ((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → (𝐵‘𝐿) ≤ 1)) |
| 66 | 33, 34, 65 | sylc 65 |
. . . . . 6
⊢ (𝜑 → (𝐵‘𝐿) ≤ 1) |
| 67 | 57, 66 | eqbrtrd 4675 |
. . . . 5
⊢ (𝜑 → (𝐴‘𝐿) ≤ 1) |
| 68 | 58, 67 | jca 554 |
. . . 4
⊢ (𝜑 → (0 ≤ (𝐴‘𝐿) ∧ (𝐴‘𝐿) ≤ 1)) |
| 69 | 68 | a1i 11 |
. . 3
⊢ (𝑀 ∈
(ℤ≥‘𝐿) → (𝜑 → (0 ≤ (𝐴‘𝐿) ∧ (𝐴‘𝐿) ≤ 1))) |
| 70 | | elfzouz 12474 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (𝐿..^𝑀) → 𝑗 ∈ (ℤ≥‘𝐿)) |
| 71 | 70 | 3ad2ant1 1082 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 𝑗 ∈ (ℤ≥‘𝐿)) |
| 72 | | simpl3 1066 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) ∧ 𝑘 ∈ (𝐿...𝑗)) → 𝜑) |
| 73 | | elfzouz2 12484 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (𝐿..^𝑀) → 𝑀 ∈ (ℤ≥‘𝑗)) |
| 74 | | fzss2 12381 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈
(ℤ≥‘𝑗) → (𝐿...𝑗) ⊆ (𝐿...𝑀)) |
| 75 | 73, 74 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (𝐿..^𝑀) → (𝐿...𝑗) ⊆ (𝐿...𝑀)) |
| 76 | 75 | 3ad2ant1 1082 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (𝐿...𝑗) ⊆ (𝐿...𝑀)) |
| 77 | 76 | sselda 3603 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) ∧ 𝑘 ∈ (𝐿...𝑗)) → 𝑘 ∈ (𝐿...𝑀)) |
| 78 | | nfv 1843 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖 𝑘 ∈ (𝐿...𝑀) |
| 79 | 35, 78 | nfan 1828 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝜑 ∧ 𝑘 ∈ (𝐿...𝑀)) |
| 80 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑖𝑘 |
| 81 | 40, 80 | nffv 6198 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖(𝐵‘𝑘) |
| 82 | 81 | nfel1 2779 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝐵‘𝑘) ∈ ℝ |
| 83 | 79, 82 | nfim 1825 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖((𝜑 ∧ 𝑘 ∈ (𝐿...𝑀)) → (𝐵‘𝑘) ∈ ℝ) |
| 84 | | eleq1 2689 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → (𝑖 ∈ (𝐿...𝑀) ↔ 𝑘 ∈ (𝐿...𝑀))) |
| 85 | 84 | anbi2d 740 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) ↔ (𝜑 ∧ 𝑘 ∈ (𝐿...𝑀)))) |
| 86 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → (𝐵‘𝑖) = (𝐵‘𝑘)) |
| 87 | 86 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → ((𝐵‘𝑖) ∈ ℝ ↔ (𝐵‘𝑘) ∈ ℝ)) |
| 88 | 85, 87 | imbi12d 334 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑘 → (((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) ↔ ((𝜑 ∧ 𝑘 ∈ (𝐿...𝑀)) → (𝐵‘𝑘) ∈ ℝ))) |
| 89 | | fmul01.7 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
| 90 | 83, 88, 89 | chvar 2262 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐿...𝑀)) → (𝐵‘𝑘) ∈ ℝ) |
| 91 | 72, 77, 90 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) ∧ 𝑘 ∈ (𝐿...𝑗)) → (𝐵‘𝑘) ∈ ℝ) |
| 92 | | remulcl 10021 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ) → (𝑘 · 𝑙) ∈ ℝ) |
| 93 | 92 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) ∧ (𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ)) → (𝑘 · 𝑙) ∈ ℝ) |
| 94 | 71, 91, 93 | seqcl 12821 |
. . . . . . . 8
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (seq𝐿( · , 𝐵)‘𝑗) ∈ ℝ) |
| 95 | | simp3 1063 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 𝜑) |
| 96 | | fzofzp1 12565 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (𝐿..^𝑀) → (𝑗 + 1) ∈ (𝐿...𝑀)) |
| 97 | 96 | 3ad2ant1 1082 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (𝑗 + 1) ∈ (𝐿...𝑀)) |
| 98 | | nfv 1843 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖(𝑗 + 1) ∈ (𝐿...𝑀) |
| 99 | 35, 98 | nfan 1828 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) |
| 100 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑖(𝑗 + 1) |
| 101 | 40, 100 | nffv 6198 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖(𝐵‘(𝑗 + 1)) |
| 102 | 101 | nfel1 2779 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝐵‘(𝑗 + 1)) ∈ ℝ |
| 103 | 99, 102 | nfim 1825 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → (𝐵‘(𝑗 + 1)) ∈ ℝ) |
| 104 | | eleq1 2689 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑗 + 1) → (𝑖 ∈ (𝐿...𝑀) ↔ (𝑗 + 1) ∈ (𝐿...𝑀))) |
| 105 | 104 | anbi2d 740 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑗 + 1) → ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) ↔ (𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)))) |
| 106 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑗 + 1) → (𝐵‘𝑖) = (𝐵‘(𝑗 + 1))) |
| 107 | 106 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑗 + 1) → ((𝐵‘𝑖) ∈ ℝ ↔ (𝐵‘(𝑗 + 1)) ∈ ℝ)) |
| 108 | 105, 107 | imbi12d 334 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑗 + 1) → (((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) ↔ ((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → (𝐵‘(𝑗 + 1)) ∈ ℝ))) |
| 109 | 103, 108,
89 | vtoclg1f 3265 |
. . . . . . . . . 10
⊢ ((𝑗 + 1) ∈ (𝐿...𝑀) → ((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → (𝐵‘(𝑗 + 1)) ∈ ℝ)) |
| 110 | 109 | anabsi7 860 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → (𝐵‘(𝑗 + 1)) ∈ ℝ) |
| 111 | 95, 97, 110 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (𝐵‘(𝑗 + 1)) ∈ ℝ) |
| 112 | | pm3.35 611 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1))) → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) |
| 113 | 112 | ancoms 469 |
. . . . . . . . . . 11
⊢ (((𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) |
| 114 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((0 ≤
(𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1) → 0 ≤ (𝐴‘𝑗)) |
| 115 | 113, 114 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 0 ≤ (𝐴‘𝑗)) |
| 116 | 115 | 3adant1 1079 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 0 ≤ (𝐴‘𝑗)) |
| 117 | 53 | fveq1i 6192 |
. . . . . . . . 9
⊢ (𝐴‘𝑗) = (seq𝐿( · , 𝐵)‘𝑗) |
| 118 | 116, 117 | syl6breq 4694 |
. . . . . . . 8
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 0 ≤ (seq𝐿( · , 𝐵)‘𝑗)) |
| 119 | | simp1 1061 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 𝑗 ∈ (𝐿..^𝑀)) |
| 120 | 96 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐿..^𝑀)) → (𝑗 + 1) ∈ (𝐿...𝑀)) |
| 121 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐿..^𝑀)) → 𝜑) |
| 122 | 121, 120 | jca 554 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐿..^𝑀)) → (𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀))) |
| 123 | 38, 39, 101 | nfbr 4699 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖0 ≤
(𝐵‘(𝑗 + 1)) |
| 124 | 99, 123 | nfim 1825 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘(𝑗 + 1))) |
| 125 | 106 | breq2d 4665 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑗 + 1) → (0 ≤ (𝐵‘𝑖) ↔ 0 ≤ (𝐵‘(𝑗 + 1)))) |
| 126 | 105, 125 | imbi12d 334 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑗 + 1) → (((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) ↔ ((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘(𝑗 + 1))))) |
| 127 | 124, 126,
50 | vtoclg1f 3265 |
. . . . . . . . . 10
⊢ ((𝑗 + 1) ∈ (𝐿...𝑀) → ((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘(𝑗 + 1)))) |
| 128 | 120, 122,
127 | sylc 65 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐿..^𝑀)) → 0 ≤ (𝐵‘(𝑗 + 1))) |
| 129 | 95, 119, 128 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 0 ≤ (𝐵‘(𝑗 + 1))) |
| 130 | 94, 111, 118, 129 | mulge0d 10604 |
. . . . . . 7
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 0 ≤ ((seq𝐿( · , 𝐵)‘𝑗) · (𝐵‘(𝑗 + 1)))) |
| 131 | | seqp1 12816 |
. . . . . . . 8
⊢ (𝑗 ∈
(ℤ≥‘𝐿) → (seq𝐿( · , 𝐵)‘(𝑗 + 1)) = ((seq𝐿( · , 𝐵)‘𝑗) · (𝐵‘(𝑗 + 1)))) |
| 132 | 71, 131 | syl 17 |
. . . . . . 7
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (seq𝐿( · , 𝐵)‘(𝑗 + 1)) = ((seq𝐿( · , 𝐵)‘𝑗) · (𝐵‘(𝑗 + 1)))) |
| 133 | 130, 132 | breqtrrd 4681 |
. . . . . 6
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 0 ≤ (seq𝐿( · , 𝐵)‘(𝑗 + 1))) |
| 134 | 53 | fveq1i 6192 |
. . . . . 6
⊢ (𝐴‘(𝑗 + 1)) = (seq𝐿( · , 𝐵)‘(𝑗 + 1)) |
| 135 | 133, 134 | syl6breqr 4695 |
. . . . 5
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 0 ≤ (𝐴‘(𝑗 + 1))) |
| 136 | 94, 111 | remulcld 10070 |
. . . . . . . 8
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → ((seq𝐿( · , 𝐵)‘𝑗) · (𝐵‘(𝑗 + 1))) ∈ ℝ) |
| 137 | | 1red 10055 |
. . . . . . . 8
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 1 ∈ ℝ) |
| 138 | 95, 97 | jca 554 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀))) |
| 139 | 101, 39, 59 | nfbr 4699 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖(𝐵‘(𝑗 + 1)) ≤ 1 |
| 140 | 99, 139 | nfim 1825 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → (𝐵‘(𝑗 + 1)) ≤ 1) |
| 141 | 106 | breq1d 4663 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑗 + 1) → ((𝐵‘𝑖) ≤ 1 ↔ (𝐵‘(𝑗 + 1)) ≤ 1)) |
| 142 | 105, 141 | imbi12d 334 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑗 + 1) → (((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) ↔ ((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → (𝐵‘(𝑗 + 1)) ≤ 1))) |
| 143 | 140, 142,
64 | vtoclg1f 3265 |
. . . . . . . . . . 11
⊢ ((𝑗 + 1) ∈ (𝐿...𝑀) → ((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → (𝐵‘(𝑗 + 1)) ≤ 1)) |
| 144 | 97, 138, 143 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (𝐵‘(𝑗 + 1)) ≤ 1) |
| 145 | 111, 137,
94, 118, 144 | lemul2ad 10964 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → ((seq𝐿( · , 𝐵)‘𝑗) · (𝐵‘(𝑗 + 1))) ≤ ((seq𝐿( · , 𝐵)‘𝑗) · 1)) |
| 146 | 94 | recnd 10068 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (seq𝐿( · , 𝐵)‘𝑗) ∈ ℂ) |
| 147 | 146 | mulid1d 10057 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → ((seq𝐿( · , 𝐵)‘𝑗) · 1) = (seq𝐿( · , 𝐵)‘𝑗)) |
| 148 | 145, 147 | breqtrd 4679 |
. . . . . . . 8
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → ((seq𝐿( · , 𝐵)‘𝑗) · (𝐵‘(𝑗 + 1))) ≤ (seq𝐿( · , 𝐵)‘𝑗)) |
| 149 | | simp2 1062 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1))) |
| 150 | 112 | simprd 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1))) → (𝐴‘𝑗) ≤ 1) |
| 151 | 95, 149, 150 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (𝐴‘𝑗) ≤ 1) |
| 152 | 117, 151 | syl5eqbrr 4689 |
. . . . . . . 8
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (seq𝐿( · , 𝐵)‘𝑗) ≤ 1) |
| 153 | 136, 94, 137, 148, 152 | letrd 10194 |
. . . . . . 7
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → ((seq𝐿( · , 𝐵)‘𝑗) · (𝐵‘(𝑗 + 1))) ≤ 1) |
| 154 | 132, 153 | eqbrtrd 4675 |
. . . . . 6
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (seq𝐿( · , 𝐵)‘(𝑗 + 1)) ≤ 1) |
| 155 | 134, 154 | syl5eqbr 4688 |
. . . . 5
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (𝐴‘(𝑗 + 1)) ≤ 1) |
| 156 | 135, 155 | jca 554 |
. . . 4
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (0 ≤ (𝐴‘(𝑗 + 1)) ∧ (𝐴‘(𝑗 + 1)) ≤ 1)) |
| 157 | 156 | 3exp 1264 |
. . 3
⊢ (𝑗 ∈ (𝐿..^𝑀) → ((𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) → (𝜑 → (0 ≤ (𝐴‘(𝑗 + 1)) ∧ (𝐴‘(𝑗 + 1)) ≤ 1)))) |
| 158 | 6, 11, 16, 21, 69, 157 | fzind2 12586 |
. 2
⊢ (𝐾 ∈ (𝐿...𝑀) → (𝜑 → (0 ≤ (𝐴‘𝐾) ∧ (𝐴‘𝐾) ≤ 1))) |
| 159 | 1, 158 | mpcom 38 |
1
⊢ (𝜑 → (0 ≤ (𝐴‘𝐾) ∧ (𝐴‘𝐾) ≤ 1)) |