Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmulcl Structured version   Visualization version   GIF version

Theorem fmulcl 39813
Description: If ' Y ' is closed under the multiplication of two functions, then Y is closed under the multiplication ( ' X ' ) of a finite number of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmulcl.1 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
fmulcl.2 𝑋 = (seq1(𝑃, 𝑈)‘𝑁)
fmulcl.4 (𝜑𝑁 ∈ (1...𝑀))
fmulcl.5 (𝜑𝑈:(1...𝑀)⟶𝑌)
fmulcl.6 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
fmulcl.7 (𝜑𝑇 ∈ V)
Assertion
Ref Expression
fmulcl (𝜑𝑋𝑌)
Distinct variable groups:   𝑓,𝑔,𝑡,𝑇   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔
Allowed substitution hints:   𝜑(𝑡)   𝑃(𝑡,𝑓,𝑔)   𝑈(𝑡,𝑓,𝑔)   𝑀(𝑡,𝑓,𝑔)   𝑁(𝑡,𝑓,𝑔)   𝑋(𝑡,𝑓,𝑔)   𝑌(𝑡)

Proof of Theorem fmulcl
Dummy variables 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmulcl.2 . 2 𝑋 = (seq1(𝑃, 𝑈)‘𝑁)
2 fmulcl.4 . . . 4 (𝜑𝑁 ∈ (1...𝑀))
3 elfzuz 12338 . . . 4 (𝑁 ∈ (1...𝑀) → 𝑁 ∈ (ℤ‘1))
42, 3syl 17 . . 3 (𝜑𝑁 ∈ (ℤ‘1))
5 elfzuz3 12339 . . . . . 6 (𝑁 ∈ (1...𝑀) → 𝑀 ∈ (ℤ𝑁))
6 fzss2 12381 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...𝑀))
72, 5, 63syl 18 . . . . 5 (𝜑 → (1...𝑁) ⊆ (1...𝑀))
87sselda 3603 . . . 4 ((𝜑 ∈ (1...𝑁)) → ∈ (1...𝑀))
9 fmulcl.5 . . . . 5 (𝜑𝑈:(1...𝑀)⟶𝑌)
109ffvelrnda 6359 . . . 4 ((𝜑 ∈ (1...𝑀)) → (𝑈) ∈ 𝑌)
118, 10syldan 487 . . 3 ((𝜑 ∈ (1...𝑁)) → (𝑈) ∈ 𝑌)
12 simprl 794 . . . . 5 ((𝜑 ∧ (𝑌𝑙𝑌)) → 𝑌)
13 simprr 796 . . . . 5 ((𝜑 ∧ (𝑌𝑙𝑌)) → 𝑙𝑌)
14 fmulcl.7 . . . . . . 7 (𝜑𝑇 ∈ V)
1514adantr 481 . . . . . 6 ((𝜑 ∧ (𝑌𝑙𝑌)) → 𝑇 ∈ V)
16 mptexg 6484 . . . . . 6 (𝑇 ∈ V → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ V)
1715, 16syl 17 . . . . 5 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ V)
18 fveq1 6190 . . . . . . . 8 (𝑓 = → (𝑓𝑡) = (𝑡))
19 fveq1 6190 . . . . . . . 8 (𝑔 = 𝑙 → (𝑔𝑡) = (𝑙𝑡))
2018, 19oveqan12d 6669 . . . . . . 7 ((𝑓 = 𝑔 = 𝑙) → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑙𝑡)))
2120mpteq2dv 4745 . . . . . 6 ((𝑓 = 𝑔 = 𝑙) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
22 fmulcl.1 . . . . . 6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
2321, 22ovmpt2ga 6790 . . . . 5 ((𝑌𝑙𝑌 ∧ (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ V) → (𝑃𝑙) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
2412, 13, 17, 23syl3anc 1326 . . . 4 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑃𝑙) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
25 3simpc 1060 . . . . . 6 ((𝜑𝑌𝑙𝑌) → (𝑌𝑙𝑌))
26 eleq1 2689 . . . . . . . . 9 (𝑓 = → (𝑓𝑌𝑌))
27263anbi2d 1404 . . . . . . . 8 (𝑓 = → ((𝜑𝑓𝑌𝑔𝑌) ↔ (𝜑𝑌𝑔𝑌)))
2818oveq1d 6665 . . . . . . . . . 10 (𝑓 = → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑔𝑡)))
2928mpteq2dv 4745 . . . . . . . . 9 (𝑓 = → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))))
3029eleq1d 2686 . . . . . . . 8 (𝑓 = → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌 ↔ (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌))
3127, 30imbi12d 334 . . . . . . 7 (𝑓 = → (((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌) ↔ ((𝜑𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌)))
32 eleq1 2689 . . . . . . . . 9 (𝑔 = 𝑙 → (𝑔𝑌𝑙𝑌))
33323anbi3d 1405 . . . . . . . 8 (𝑔 = 𝑙 → ((𝜑𝑌𝑔𝑌) ↔ (𝜑𝑌𝑙𝑌)))
3419oveq2d 6666 . . . . . . . . . 10 (𝑔 = 𝑙 → ((𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑙𝑡)))
3534mpteq2dv 4745 . . . . . . . . 9 (𝑔 = 𝑙 → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
3635eleq1d 2686 . . . . . . . 8 (𝑔 = 𝑙 → ((𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌 ↔ (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌))
3733, 36imbi12d 334 . . . . . . 7 (𝑔 = 𝑙 → (((𝜑𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌) ↔ ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)))
38 fmulcl.6 . . . . . . 7 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
3931, 37, 38vtocl2g 3270 . . . . . 6 ((𝑌𝑙𝑌) → ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌))
4025, 39mpcom 38 . . . . 5 ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)
41403expb 1266 . . . 4 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)
4224, 41eqeltrd 2701 . . 3 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑃𝑙) ∈ 𝑌)
434, 11, 42seqcl 12821 . 2 (𝜑 → (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌)
441, 43syl5eqel 2705 1 (𝜑𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1c1 9937   · cmul 9941  cuz 11687  ...cfz 12326  seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  fmuldfeqlem1  39814  stoweidlem51  40268
  Copyright terms: Public domain W3C validator