Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmul01 Structured version   Visualization version   Unicode version

Theorem fmul01 39812
Description: Multiplying a finite number of values in [ 0 , 1 ] , gives the final product itself a number in [ 0 , 1 ]. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmul01.1  |-  F/_ i B
fmul01.2  |-  F/ i
ph
fmul01.3  |-  A  =  seq L (  x.  ,  B )
fmul01.4  |-  ( ph  ->  L  e.  ZZ )
fmul01.5  |-  ( ph  ->  M  e.  ( ZZ>= `  L ) )
fmul01.6  |-  ( ph  ->  K  e.  ( L ... M ) )
fmul01.7  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  e.  RR )
fmul01.8  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  0  <_  ( B `  i ) )
fmul01.9  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  <_  1
)
Assertion
Ref Expression
fmul01  |-  ( ph  ->  ( 0  <_  ( A `  K )  /\  ( A `  K
)  <_  1 ) )
Distinct variable groups:    i, L    i, M
Allowed substitution hints:    ph( i)    A( i)    B( i)    K( i)

Proof of Theorem fmul01
Dummy variables  j 
k  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmul01.6 . 2  |-  ( ph  ->  K  e.  ( L ... M ) )
2 fveq2 6191 . . . . . 6  |-  ( k  =  L  ->  ( A `  k )  =  ( A `  L ) )
32breq2d 4665 . . . . 5  |-  ( k  =  L  ->  (
0  <_  ( A `  k )  <->  0  <_  ( A `  L ) ) )
42breq1d 4663 . . . . 5  |-  ( k  =  L  ->  (
( A `  k
)  <_  1  <->  ( A `  L )  <_  1
) )
53, 4anbi12d 747 . . . 4  |-  ( k  =  L  ->  (
( 0  <_  ( A `  k )  /\  ( A `  k
)  <_  1 )  <-> 
( 0  <_  ( A `  L )  /\  ( A `  L
)  <_  1 ) ) )
65imbi2d 330 . . 3  |-  ( k  =  L  ->  (
( ph  ->  ( 0  <_  ( A `  k )  /\  ( A `  k )  <_  1 ) )  <->  ( ph  ->  ( 0  <_  ( A `  L )  /\  ( A `  L
)  <_  1 ) ) ) )
7 fveq2 6191 . . . . . 6  |-  ( k  =  j  ->  ( A `  k )  =  ( A `  j ) )
87breq2d 4665 . . . . 5  |-  ( k  =  j  ->  (
0  <_  ( A `  k )  <->  0  <_  ( A `  j ) ) )
97breq1d 4663 . . . . 5  |-  ( k  =  j  ->  (
( A `  k
)  <_  1  <->  ( A `  j )  <_  1
) )
108, 9anbi12d 747 . . . 4  |-  ( k  =  j  ->  (
( 0  <_  ( A `  k )  /\  ( A `  k
)  <_  1 )  <-> 
( 0  <_  ( A `  j )  /\  ( A `  j
)  <_  1 ) ) )
1110imbi2d 330 . . 3  |-  ( k  =  j  ->  (
( ph  ->  ( 0  <_  ( A `  k )  /\  ( A `  k )  <_  1 ) )  <->  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j
)  <_  1 ) ) ) )
12 fveq2 6191 . . . . . 6  |-  ( k  =  ( j  +  1 )  ->  ( A `  k )  =  ( A `  ( j  +  1 ) ) )
1312breq2d 4665 . . . . 5  |-  ( k  =  ( j  +  1 )  ->  (
0  <_  ( A `  k )  <->  0  <_  ( A `  ( j  +  1 ) ) ) )
1412breq1d 4663 . . . . 5  |-  ( k  =  ( j  +  1 )  ->  (
( A `  k
)  <_  1  <->  ( A `  ( j  +  1 ) )  <_  1
) )
1513, 14anbi12d 747 . . . 4  |-  ( k  =  ( j  +  1 )  ->  (
( 0  <_  ( A `  k )  /\  ( A `  k
)  <_  1 )  <-> 
( 0  <_  ( A `  ( j  +  1 ) )  /\  ( A `  ( j  +  1 ) )  <_  1
) ) )
1615imbi2d 330 . . 3  |-  ( k  =  ( j  +  1 )  ->  (
( ph  ->  ( 0  <_  ( A `  k )  /\  ( A `  k )  <_  1 ) )  <->  ( ph  ->  ( 0  <_  ( A `  ( j  +  1 ) )  /\  ( A `  ( j  +  1 ) )  <_  1
) ) ) )
17 fveq2 6191 . . . . . 6  |-  ( k  =  K  ->  ( A `  k )  =  ( A `  K ) )
1817breq2d 4665 . . . . 5  |-  ( k  =  K  ->  (
0  <_  ( A `  k )  <->  0  <_  ( A `  K ) ) )
1917breq1d 4663 . . . . 5  |-  ( k  =  K  ->  (
( A `  k
)  <_  1  <->  ( A `  K )  <_  1
) )
2018, 19anbi12d 747 . . . 4  |-  ( k  =  K  ->  (
( 0  <_  ( A `  k )  /\  ( A `  k
)  <_  1 )  <-> 
( 0  <_  ( A `  K )  /\  ( A `  K
)  <_  1 ) ) )
2120imbi2d 330 . . 3  |-  ( k  =  K  ->  (
( ph  ->  ( 0  <_  ( A `  k )  /\  ( A `  k )  <_  1 ) )  <->  ( ph  ->  ( 0  <_  ( A `  K )  /\  ( A `  K
)  <_  1 ) ) ) )
22 fmul01.4 . . . . . . . . . 10  |-  ( ph  ->  L  e.  ZZ )
2322zred 11482 . . . . . . . . 9  |-  ( ph  ->  L  e.  RR )
2423leidd 10594 . . . . . . . 8  |-  ( ph  ->  L  <_  L )
25 fmul01.5 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( ZZ>= `  L ) )
26 eluzelz 11697 . . . . . . . . . . 11  |-  ( M  e.  ( ZZ>= `  L
)  ->  M  e.  ZZ )
2725, 26syl 17 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
28 eluz 11701 . . . . . . . . . 10  |-  ( ( L  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  e.  (
ZZ>= `  L )  <->  L  <_  M ) )
2922, 27, 28syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( M  e.  (
ZZ>= `  L )  <->  L  <_  M ) )
3025, 29mpbid 222 . . . . . . . 8  |-  ( ph  ->  L  <_  M )
31 elfz 12332 . . . . . . . . 9  |-  ( ( L  e.  ZZ  /\  L  e.  ZZ  /\  M  e.  ZZ )  ->  ( L  e.  ( L ... M )  <->  ( L  <_  L  /\  L  <_  M ) ) )
3222, 22, 27, 31syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( L  e.  ( L ... M )  <-> 
( L  <_  L  /\  L  <_  M ) ) )
3324, 30, 32mpbir2and 957 . . . . . . 7  |-  ( ph  ->  L  e.  ( L ... M ) )
3433ancli 574 . . . . . . 7  |-  ( ph  ->  ( ph  /\  L  e.  ( L ... M
) ) )
35 fmul01.2 . . . . . . . . . 10  |-  F/ i
ph
36 nfv 1843 . . . . . . . . . 10  |-  F/ i  L  e.  ( L ... M )
3735, 36nfan 1828 . . . . . . . . 9  |-  F/ i ( ph  /\  L  e.  ( L ... M
) )
38 nfcv 2764 . . . . . . . . . 10  |-  F/_ i
0
39 nfcv 2764 . . . . . . . . . 10  |-  F/_ i  <_
40 fmul01.1 . . . . . . . . . . 11  |-  F/_ i B
41 nfcv 2764 . . . . . . . . . . 11  |-  F/_ i L
4240, 41nffv 6198 . . . . . . . . . 10  |-  F/_ i
( B `  L
)
4338, 39, 42nfbr 4699 . . . . . . . . 9  |-  F/ i 0  <_  ( B `  L )
4437, 43nfim 1825 . . . . . . . 8  |-  F/ i ( ( ph  /\  L  e.  ( L ... M ) )  -> 
0  <_  ( B `  L ) )
45 eleq1 2689 . . . . . . . . . 10  |-  ( i  =  L  ->  (
i  e.  ( L ... M )  <->  L  e.  ( L ... M ) ) )
4645anbi2d 740 . . . . . . . . 9  |-  ( i  =  L  ->  (
( ph  /\  i  e.  ( L ... M
) )  <->  ( ph  /\  L  e.  ( L ... M ) ) ) )
47 fveq2 6191 . . . . . . . . . 10  |-  ( i  =  L  ->  ( B `  i )  =  ( B `  L ) )
4847breq2d 4665 . . . . . . . . 9  |-  ( i  =  L  ->  (
0  <_  ( B `  i )  <->  0  <_  ( B `  L ) ) )
4946, 48imbi12d 334 . . . . . . . 8  |-  ( i  =  L  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
0  <_  ( B `  i ) )  <->  ( ( ph  /\  L  e.  ( L ... M ) )  ->  0  <_  ( B `  L ) ) ) )
50 fmul01.8 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  0  <_  ( B `  i ) )
5144, 49, 50vtoclg1f 3265 . . . . . . 7  |-  ( L  e.  ( L ... M )  ->  (
( ph  /\  L  e.  ( L ... M
) )  ->  0  <_  ( B `  L
) ) )
5233, 34, 51sylc 65 . . . . . 6  |-  ( ph  ->  0  <_  ( B `  L ) )
53 fmul01.3 . . . . . . . 8  |-  A  =  seq L (  x.  ,  B )
5453fveq1i 6192 . . . . . . 7  |-  ( A `
 L )  =  (  seq L (  x.  ,  B ) `
 L )
55 seq1 12814 . . . . . . . 8  |-  ( L  e.  ZZ  ->  (  seq L (  x.  ,  B ) `  L
)  =  ( B `
 L ) )
5622, 55syl 17 . . . . . . 7  |-  ( ph  ->  (  seq L (  x.  ,  B ) `
 L )  =  ( B `  L
) )
5754, 56syl5eq 2668 . . . . . 6  |-  ( ph  ->  ( A `  L
)  =  ( B `
 L ) )
5852, 57breqtrrd 4681 . . . . 5  |-  ( ph  ->  0  <_  ( A `  L ) )
59 nfcv 2764 . . . . . . . . . 10  |-  F/_ i
1
6042, 39, 59nfbr 4699 . . . . . . . . 9  |-  F/ i ( B `  L
)  <_  1
6137, 60nfim 1825 . . . . . . . 8  |-  F/ i ( ( ph  /\  L  e.  ( L ... M ) )  -> 
( B `  L
)  <_  1 )
6247breq1d 4663 . . . . . . . . 9  |-  ( i  =  L  ->  (
( B `  i
)  <_  1  <->  ( B `  L )  <_  1
) )
6346, 62imbi12d 334 . . . . . . . 8  |-  ( i  =  L  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
( B `  i
)  <_  1 )  <-> 
( ( ph  /\  L  e.  ( L ... M ) )  -> 
( B `  L
)  <_  1 ) ) )
64 fmul01.9 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  <_  1
)
6561, 63, 64vtoclg1f 3265 . . . . . . 7  |-  ( L  e.  ( L ... M )  ->  (
( ph  /\  L  e.  ( L ... M
) )  ->  ( B `  L )  <_  1 ) )
6633, 34, 65sylc 65 . . . . . 6  |-  ( ph  ->  ( B `  L
)  <_  1 )
6757, 66eqbrtrd 4675 . . . . 5  |-  ( ph  ->  ( A `  L
)  <_  1 )
6858, 67jca 554 . . . 4  |-  ( ph  ->  ( 0  <_  ( A `  L )  /\  ( A `  L
)  <_  1 ) )
6968a1i 11 . . 3  |-  ( M  e.  ( ZZ>= `  L
)  ->  ( ph  ->  ( 0  <_  ( A `  L )  /\  ( A `  L
)  <_  1 ) ) )
70 elfzouz 12474 . . . . . . . . . 10  |-  ( j  e.  ( L..^ M
)  ->  j  e.  ( ZZ>= `  L )
)
71703ad2ant1 1082 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  j  e.  (
ZZ>= `  L ) )
72 simpl3 1066 . . . . . . . . . 10  |-  ( ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  /\  k  e.  ( L ... j
) )  ->  ph )
73 elfzouz2 12484 . . . . . . . . . . . . 13  |-  ( j  e.  ( L..^ M
)  ->  M  e.  ( ZZ>= `  j )
)
74 fzss2 12381 . . . . . . . . . . . . 13  |-  ( M  e.  ( ZZ>= `  j
)  ->  ( L ... j )  C_  ( L ... M ) )
7573, 74syl 17 . . . . . . . . . . . 12  |-  ( j  e.  ( L..^ M
)  ->  ( L ... j )  C_  ( L ... M ) )
76753ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( L ... j )  C_  ( L ... M ) )
7776sselda 3603 . . . . . . . . . 10  |-  ( ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  /\  k  e.  ( L ... j
) )  ->  k  e.  ( L ... M
) )
78 nfv 1843 . . . . . . . . . . . . 13  |-  F/ i  k  e.  ( L ... M )
7935, 78nfan 1828 . . . . . . . . . . . 12  |-  F/ i ( ph  /\  k  e.  ( L ... M
) )
80 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ i
k
8140, 80nffv 6198 . . . . . . . . . . . . 13  |-  F/_ i
( B `  k
)
8281nfel1 2779 . . . . . . . . . . . 12  |-  F/ i ( B `  k
)  e.  RR
8379, 82nfim 1825 . . . . . . . . . . 11  |-  F/ i ( ( ph  /\  k  e.  ( L ... M ) )  -> 
( B `  k
)  e.  RR )
84 eleq1 2689 . . . . . . . . . . . . 13  |-  ( i  =  k  ->  (
i  e.  ( L ... M )  <->  k  e.  ( L ... M ) ) )
8584anbi2d 740 . . . . . . . . . . . 12  |-  ( i  =  k  ->  (
( ph  /\  i  e.  ( L ... M
) )  <->  ( ph  /\  k  e.  ( L ... M ) ) ) )
86 fveq2 6191 . . . . . . . . . . . . 13  |-  ( i  =  k  ->  ( B `  i )  =  ( B `  k ) )
8786eleq1d 2686 . . . . . . . . . . . 12  |-  ( i  =  k  ->  (
( B `  i
)  e.  RR  <->  ( B `  k )  e.  RR ) )
8885, 87imbi12d 334 . . . . . . . . . . 11  |-  ( i  =  k  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
( B `  i
)  e.  RR )  <-> 
( ( ph  /\  k  e.  ( L ... M ) )  -> 
( B `  k
)  e.  RR ) ) )
89 fmul01.7 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  e.  RR )
9083, 88, 89chvar 2262 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( L ... M ) )  ->  ( B `  k )  e.  RR )
9172, 77, 90syl2anc 693 . . . . . . . . 9  |-  ( ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  /\  k  e.  ( L ... j
) )  ->  ( B `  k )  e.  RR )
92 remulcl 10021 . . . . . . . . . 10  |-  ( ( k  e.  RR  /\  l  e.  RR )  ->  ( k  x.  l
)  e.  RR )
9392adantl 482 . . . . . . . . 9  |-  ( ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  /\  ( k  e.  RR  /\  l  e.  RR ) )  -> 
( k  x.  l
)  e.  RR )
9471, 91, 93seqcl 12821 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  (  seq L
(  x.  ,  B
) `  j )  e.  RR )
95 simp3 1063 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ph )
96 fzofzp1 12565 . . . . . . . . . 10  |-  ( j  e.  ( L..^ M
)  ->  ( j  +  1 )  e.  ( L ... M
) )
97963ad2ant1 1082 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( j  +  1 )  e.  ( L ... M ) )
98 nfv 1843 . . . . . . . . . . . . 13  |-  F/ i ( j  +  1 )  e.  ( L ... M )
9935, 98nfan 1828 . . . . . . . . . . . 12  |-  F/ i ( ph  /\  (
j  +  1 )  e.  ( L ... M ) )
100 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ i
( j  +  1 )
10140, 100nffv 6198 . . . . . . . . . . . . 13  |-  F/_ i
( B `  (
j  +  1 ) )
102101nfel1 2779 . . . . . . . . . . . 12  |-  F/ i ( B `  (
j  +  1 ) )  e.  RR
10399, 102nfim 1825 . . . . . . . . . . 11  |-  F/ i ( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  ( B `  ( j  +  1 ) )  e.  RR )
104 eleq1 2689 . . . . . . . . . . . . 13  |-  ( i  =  ( j  +  1 )  ->  (
i  e.  ( L ... M )  <->  ( j  +  1 )  e.  ( L ... M
) ) )
105104anbi2d 740 . . . . . . . . . . . 12  |-  ( i  =  ( j  +  1 )  ->  (
( ph  /\  i  e.  ( L ... M
) )  <->  ( ph  /\  ( j  +  1 )  e.  ( L ... M ) ) ) )
106 fveq2 6191 . . . . . . . . . . . . 13  |-  ( i  =  ( j  +  1 )  ->  ( B `  i )  =  ( B `  ( j  +  1 ) ) )
107106eleq1d 2686 . . . . . . . . . . . 12  |-  ( i  =  ( j  +  1 )  ->  (
( B `  i
)  e.  RR  <->  ( B `  ( j  +  1 ) )  e.  RR ) )
108105, 107imbi12d 334 . . . . . . . . . . 11  |-  ( i  =  ( j  +  1 )  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
( B `  i
)  e.  RR )  <-> 
( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  ( B `  ( j  +  1 ) )  e.  RR ) ) )
109103, 108, 89vtoclg1f 3265 . . . . . . . . . 10  |-  ( ( j  +  1 )  e.  ( L ... M )  ->  (
( ph  /\  (
j  +  1 )  e.  ( L ... M ) )  -> 
( B `  (
j  +  1 ) )  e.  RR ) )
110109anabsi7 860 . . . . . . . . 9  |-  ( (
ph  /\  ( j  +  1 )  e.  ( L ... M
) )  ->  ( B `  ( j  +  1 ) )  e.  RR )
11195, 97, 110syl2anc 693 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( B `  ( j  +  1 ) )  e.  RR )
112 pm3.35 611 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j
)  <_  1 ) ) )  ->  (
0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )
113112ancoms 469 . . . . . . . . . . 11  |-  ( ( ( ph  ->  (
0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )
114 simpl 473 . . . . . . . . . . 11  |-  ( ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 )  ->  0  <_  ( A `  j
) )
115113, 114syl 17 . . . . . . . . . 10  |-  ( ( ( ph  ->  (
0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  ->  0  <_  ( A `  j ) )
1161153adant1 1079 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  ( A `  j )
)
11753fveq1i 6192 . . . . . . . . 9  |-  ( A `
 j )  =  (  seq L (  x.  ,  B ) `
 j )
118116, 117syl6breq 4694 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  (  seq L (  x.  ,  B ) `  j
) )
119 simp1 1061 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  j  e.  ( L..^ M ) )
12096adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( L..^ M ) )  ->  ( j  +  1 )  e.  ( L ... M ) )
121 simpl 473 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( L..^ M ) )  ->  ph )
122121, 120jca 554 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( L..^ M ) )  ->  ( ph  /\  ( j  +  1 )  e.  ( L ... M ) ) )
12338, 39, 101nfbr 4699 . . . . . . . . . . . 12  |-  F/ i 0  <_  ( B `  ( j  +  1 ) )
12499, 123nfim 1825 . . . . . . . . . . 11  |-  F/ i ( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  0  <_  ( B `  ( j  +  1 ) ) )
125106breq2d 4665 . . . . . . . . . . . 12  |-  ( i  =  ( j  +  1 )  ->  (
0  <_  ( B `  i )  <->  0  <_  ( B `  ( j  +  1 ) ) ) )
126105, 125imbi12d 334 . . . . . . . . . . 11  |-  ( i  =  ( j  +  1 )  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
0  <_  ( B `  i ) )  <->  ( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  0  <_  ( B `  ( j  +  1 ) ) ) ) )
127124, 126, 50vtoclg1f 3265 . . . . . . . . . 10  |-  ( ( j  +  1 )  e.  ( L ... M )  ->  (
( ph  /\  (
j  +  1 )  e.  ( L ... M ) )  -> 
0  <_  ( B `  ( j  +  1 ) ) ) )
128120, 122, 127sylc 65 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( L..^ M ) )  ->  0  <_  ( B `  ( j  +  1 ) ) )
12995, 119, 128syl2anc 693 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  ( B `  ( j  +  1 ) ) )
13094, 111, 118, 129mulge0d 10604 . . . . . . 7  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  (
(  seq L (  x.  ,  B ) `  j )  x.  ( B `  ( j  +  1 ) ) ) )
131 seqp1 12816 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  L
)  ->  (  seq L (  x.  ,  B ) `  (
j  +  1 ) )  =  ( (  seq L (  x.  ,  B ) `  j )  x.  ( B `  ( j  +  1 ) ) ) )
13271, 131syl 17 . . . . . . 7  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  (  seq L
(  x.  ,  B
) `  ( j  +  1 ) )  =  ( (  seq L (  x.  ,  B ) `  j
)  x.  ( B `
 ( j  +  1 ) ) ) )
133130, 132breqtrrd 4681 . . . . . 6  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  (  seq L (  x.  ,  B ) `  (
j  +  1 ) ) )
13453fveq1i 6192 . . . . . 6  |-  ( A `
 ( j  +  1 ) )  =  (  seq L (  x.  ,  B ) `
 ( j  +  1 ) )
135133, 134syl6breqr 4695 . . . . 5  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  ( A `  ( j  +  1 ) ) )
13694, 111remulcld 10070 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( (  seq L (  x.  ,  B ) `  j
)  x.  ( B `
 ( j  +  1 ) ) )  e.  RR )
137 1red 10055 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  1  e.  RR )
13895, 97jca 554 . . . . . . . . . . 11  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( ph  /\  ( j  +  1 )  e.  ( L ... M ) ) )
139101, 39, 59nfbr 4699 . . . . . . . . . . . . 13  |-  F/ i ( B `  (
j  +  1 ) )  <_  1
14099, 139nfim 1825 . . . . . . . . . . . 12  |-  F/ i ( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  ( B `  ( j  +  1 ) )  <_  1
)
141106breq1d 4663 . . . . . . . . . . . . 13  |-  ( i  =  ( j  +  1 )  ->  (
( B `  i
)  <_  1  <->  ( B `  ( j  +  1 ) )  <_  1
) )
142105, 141imbi12d 334 . . . . . . . . . . . 12  |-  ( i  =  ( j  +  1 )  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
( B `  i
)  <_  1 )  <-> 
( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  ( B `  ( j  +  1 ) )  <_  1
) ) )
143140, 142, 64vtoclg1f 3265 . . . . . . . . . . 11  |-  ( ( j  +  1 )  e.  ( L ... M )  ->  (
( ph  /\  (
j  +  1 )  e.  ( L ... M ) )  -> 
( B `  (
j  +  1 ) )  <_  1 ) )
14497, 138, 143sylc 65 . . . . . . . . . 10  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( B `  ( j  +  1 ) )  <_  1
)
145111, 137, 94, 118, 144lemul2ad 10964 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( (  seq L (  x.  ,  B ) `  j
)  x.  ( B `
 ( j  +  1 ) ) )  <_  ( (  seq L (  x.  ,  B ) `  j
)  x.  1 ) )
14694recnd 10068 . . . . . . . . . 10  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  (  seq L
(  x.  ,  B
) `  j )  e.  CC )
147146mulid1d 10057 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( (  seq L (  x.  ,  B ) `  j
)  x.  1 )  =  (  seq L
(  x.  ,  B
) `  j )
)
148145, 147breqtrd 4679 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( (  seq L (  x.  ,  B ) `  j
)  x.  ( B `
 ( j  +  1 ) ) )  <_  (  seq L
(  x.  ,  B
) `  j )
)
149 simp2 1062 . . . . . . . . . 10  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) ) )
150112simprd 479 . . . . . . . . . 10  |-  ( (
ph  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j
)  <_  1 ) ) )  ->  ( A `  j )  <_  1 )
15195, 149, 150syl2anc 693 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( A `  j )  <_  1
)
152117, 151syl5eqbrr 4689 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  (  seq L
(  x.  ,  B
) `  j )  <_  1 )
153136, 94, 137, 148, 152letrd 10194 . . . . . . 7  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( (  seq L (  x.  ,  B ) `  j
)  x.  ( B `
 ( j  +  1 ) ) )  <_  1 )
154132, 153eqbrtrd 4675 . . . . . 6  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  (  seq L
(  x.  ,  B
) `  ( j  +  1 ) )  <_  1 )
155134, 154syl5eqbr 4688 . . . . 5  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( A `  ( j  +  1 ) )  <_  1
)
156135, 155jca 554 . . . 4  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( 0  <_ 
( A `  (
j  +  1 ) )  /\  ( A `
 ( j  +  1 ) )  <_ 
1 ) )
1571563exp 1264 . . 3  |-  ( j  e.  ( L..^ M
)  ->  ( ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  ->  ( ph  ->  ( 0  <_ 
( A `  (
j  +  1 ) )  /\  ( A `
 ( j  +  1 ) )  <_ 
1 ) ) ) )
1586, 11, 16, 21, 69, 157fzind2 12586 . 2  |-  ( K  e.  ( L ... M )  ->  ( ph  ->  ( 0  <_ 
( A `  K
)  /\  ( A `  K )  <_  1
) ) )
1591, 158mpcom 38 1  |-  ( ph  ->  ( 0  <_  ( A `  K )  /\  ( A `  K
)  <_  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802
This theorem is referenced by:  fmul01lt1lem1  39816  fmul01lt1lem2  39817
  Copyright terms: Public domain W3C validator