Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmulcl Structured version   Visualization version   Unicode version

Theorem fmulcl 39813
Description: If ' Y ' is closed under the multiplication of two functions, then Y is closed under the multiplication ( ' X ' ) of a finite number of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmulcl.1  |-  P  =  ( f  e.  Y ,  g  e.  Y  |->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) ) )
fmulcl.2  |-  X  =  (  seq 1 ( P ,  U ) `
 N )
fmulcl.4  |-  ( ph  ->  N  e.  ( 1 ... M ) )
fmulcl.5  |-  ( ph  ->  U : ( 1 ... M ) --> Y )
fmulcl.6  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  Y )
fmulcl.7  |-  ( ph  ->  T  e.  _V )
Assertion
Ref Expression
fmulcl  |-  ( ph  ->  X  e.  Y )
Distinct variable groups:    f, g,
t, T    f, Y, g    ph, f, g
Allowed substitution hints:    ph( t)    P( t, f, g)    U( t, f, g)    M( t, f, g)    N( t, f, g)    X( t, f, g)    Y( t)

Proof of Theorem fmulcl
Dummy variables  h  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmulcl.2 . 2  |-  X  =  (  seq 1 ( P ,  U ) `
 N )
2 fmulcl.4 . . . 4  |-  ( ph  ->  N  e.  ( 1 ... M ) )
3 elfzuz 12338 . . . 4  |-  ( N  e.  ( 1 ... M )  ->  N  e.  ( ZZ>= `  1 )
)
42, 3syl 17 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
5 elfzuz3 12339 . . . . . 6  |-  ( N  e.  ( 1 ... M )  ->  M  e.  ( ZZ>= `  N )
)
6 fzss2 12381 . . . . . 6  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( 1 ... N )  C_  ( 1 ... M
) )
72, 5, 63syl 18 . . . . 5  |-  ( ph  ->  ( 1 ... N
)  C_  ( 1 ... M ) )
87sselda 3603 . . . 4  |-  ( (
ph  /\  h  e.  ( 1 ... N
) )  ->  h  e.  ( 1 ... M
) )
9 fmulcl.5 . . . . 5  |-  ( ph  ->  U : ( 1 ... M ) --> Y )
109ffvelrnda 6359 . . . 4  |-  ( (
ph  /\  h  e.  ( 1 ... M
) )  ->  ( U `  h )  e.  Y )
118, 10syldan 487 . . 3  |-  ( (
ph  /\  h  e.  ( 1 ... N
) )  ->  ( U `  h )  e.  Y )
12 simprl 794 . . . . 5  |-  ( (
ph  /\  ( h  e.  Y  /\  l  e.  Y ) )  ->  h  e.  Y )
13 simprr 796 . . . . 5  |-  ( (
ph  /\  ( h  e.  Y  /\  l  e.  Y ) )  -> 
l  e.  Y )
14 fmulcl.7 . . . . . . 7  |-  ( ph  ->  T  e.  _V )
1514adantr 481 . . . . . 6  |-  ( (
ph  /\  ( h  e.  Y  /\  l  e.  Y ) )  ->  T  e.  _V )
16 mptexg 6484 . . . . . 6  |-  ( T  e.  _V  ->  (
t  e.  T  |->  ( ( h `  t
)  x.  ( l `
 t ) ) )  e.  _V )
1715, 16syl 17 . . . . 5  |-  ( (
ph  /\  ( h  e.  Y  /\  l  e.  Y ) )  -> 
( t  e.  T  |->  ( ( h `  t )  x.  (
l `  t )
) )  e.  _V )
18 fveq1 6190 . . . . . . . 8  |-  ( f  =  h  ->  (
f `  t )  =  ( h `  t ) )
19 fveq1 6190 . . . . . . . 8  |-  ( g  =  l  ->  (
g `  t )  =  ( l `  t ) )
2018, 19oveqan12d 6669 . . . . . . 7  |-  ( ( f  =  h  /\  g  =  l )  ->  ( ( f `  t )  x.  (
g `  t )
)  =  ( ( h `  t )  x.  ( l `  t ) ) )
2120mpteq2dv 4745 . . . . . 6  |-  ( ( f  =  h  /\  g  =  l )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  =  ( t  e.  T  |->  ( ( h `  t
)  x.  ( l `
 t ) ) ) )
22 fmulcl.1 . . . . . 6  |-  P  =  ( f  e.  Y ,  g  e.  Y  |->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) ) )
2321, 22ovmpt2ga 6790 . . . . 5  |-  ( ( h  e.  Y  /\  l  e.  Y  /\  ( t  e.  T  |->  ( ( h `  t )  x.  (
l `  t )
) )  e.  _V )  ->  ( h P l )  =  ( t  e.  T  |->  ( ( h `  t
)  x.  ( l `
 t ) ) ) )
2412, 13, 17, 23syl3anc 1326 . . . 4  |-  ( (
ph  /\  ( h  e.  Y  /\  l  e.  Y ) )  -> 
( h P l )  =  ( t  e.  T  |->  ( ( h `  t )  x.  ( l `  t ) ) ) )
25 3simpc 1060 . . . . . 6  |-  ( (
ph  /\  h  e.  Y  /\  l  e.  Y
)  ->  ( h  e.  Y  /\  l  e.  Y ) )
26 eleq1 2689 . . . . . . . . 9  |-  ( f  =  h  ->  (
f  e.  Y  <->  h  e.  Y ) )
27263anbi2d 1404 . . . . . . . 8  |-  ( f  =  h  ->  (
( ph  /\  f  e.  Y  /\  g  e.  Y )  <->  ( ph  /\  h  e.  Y  /\  g  e.  Y )
) )
2818oveq1d 6665 . . . . . . . . . 10  |-  ( f  =  h  ->  (
( f `  t
)  x.  ( g `
 t ) )  =  ( ( h `
 t )  x.  ( g `  t
) ) )
2928mpteq2dv 4745 . . . . . . . . 9  |-  ( f  =  h  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( h `  t )  x.  ( g `  t ) ) ) )
3029eleq1d 2686 . . . . . . . 8  |-  ( f  =  h  ->  (
( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  Y  <->  ( t  e.  T  |->  ( ( h `  t
)  x.  ( g `
 t ) ) )  e.  Y ) )
3127, 30imbi12d 334 . . . . . . 7  |-  ( f  =  h  ->  (
( ( ph  /\  f  e.  Y  /\  g  e.  Y )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  Y
)  <->  ( ( ph  /\  h  e.  Y  /\  g  e.  Y )  ->  ( t  e.  T  |->  ( ( h `  t )  x.  (
g `  t )
) )  e.  Y
) ) )
32 eleq1 2689 . . . . . . . . 9  |-  ( g  =  l  ->  (
g  e.  Y  <->  l  e.  Y ) )
33323anbi3d 1405 . . . . . . . 8  |-  ( g  =  l  ->  (
( ph  /\  h  e.  Y  /\  g  e.  Y )  <->  ( ph  /\  h  e.  Y  /\  l  e.  Y )
) )
3419oveq2d 6666 . . . . . . . . . 10  |-  ( g  =  l  ->  (
( h `  t
)  x.  ( g `
 t ) )  =  ( ( h `
 t )  x.  ( l `  t
) ) )
3534mpteq2dv 4745 . . . . . . . . 9  |-  ( g  =  l  ->  (
t  e.  T  |->  ( ( h `  t
)  x.  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( h `  t )  x.  ( l `  t ) ) ) )
3635eleq1d 2686 . . . . . . . 8  |-  ( g  =  l  ->  (
( t  e.  T  |->  ( ( h `  t )  x.  (
g `  t )
) )  e.  Y  <->  ( t  e.  T  |->  ( ( h `  t
)  x.  ( l `
 t ) ) )  e.  Y ) )
3733, 36imbi12d 334 . . . . . . 7  |-  ( g  =  l  ->  (
( ( ph  /\  h  e.  Y  /\  g  e.  Y )  ->  ( t  e.  T  |->  ( ( h `  t )  x.  (
g `  t )
) )  e.  Y
)  <->  ( ( ph  /\  h  e.  Y  /\  l  e.  Y )  ->  ( t  e.  T  |->  ( ( h `  t )  x.  (
l `  t )
) )  e.  Y
) ) )
38 fmulcl.6 . . . . . . 7  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  Y )
3931, 37, 38vtocl2g 3270 . . . . . 6  |-  ( ( h  e.  Y  /\  l  e.  Y )  ->  ( ( ph  /\  h  e.  Y  /\  l  e.  Y )  ->  ( t  e.  T  |->  ( ( h `  t )  x.  (
l `  t )
) )  e.  Y
) )
4025, 39mpcom 38 . . . . 5  |-  ( (
ph  /\  h  e.  Y  /\  l  e.  Y
)  ->  ( t  e.  T  |->  ( ( h `  t )  x.  ( l `  t ) ) )  e.  Y )
41403expb 1266 . . . 4  |-  ( (
ph  /\  ( h  e.  Y  /\  l  e.  Y ) )  -> 
( t  e.  T  |->  ( ( h `  t )  x.  (
l `  t )
) )  e.  Y
)
4224, 41eqeltrd 2701 . . 3  |-  ( (
ph  /\  ( h  e.  Y  /\  l  e.  Y ) )  -> 
( h P l )  e.  Y )
434, 11, 42seqcl 12821 . 2  |-  ( ph  ->  (  seq 1 ( P ,  U ) `
 N )  e.  Y )
441, 43syl5eqel 2705 1  |-  ( ph  ->  X  e.  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1c1 9937    x. cmul 9941   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  fmuldfeqlem1  39814  stoweidlem51  40268
  Copyright terms: Public domain W3C validator