Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem6 Structured version   Visualization version   GIF version

Theorem fourierdlem6 40330
Description: 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem6.a (𝜑𝐴 ∈ ℝ)
fourierdlem6.b (𝜑𝐵 ∈ ℝ)
fourierdlem6.altb (𝜑𝐴 < 𝐵)
fourierdlem6.t 𝑇 = (𝐵𝐴)
fourierdlem6.5 (𝜑𝑋 ∈ ℝ)
fourierdlem6.i (𝜑𝐼 ∈ ℤ)
fourierdlem6.j (𝜑𝐽 ∈ ℤ)
fourierdlem6.iltj (𝜑𝐼 < 𝐽)
fourierdlem6.iel (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
fourierdlem6.jel (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
Assertion
Ref Expression
fourierdlem6 (𝜑𝐽 = (𝐼 + 1))

Proof of Theorem fourierdlem6
StepHypRef Expression
1 fourierdlem6.j . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
21zred 11482 . . . . . . 7 (𝜑𝐽 ∈ ℝ)
3 fourierdlem6.i . . . . . . . 8 (𝜑𝐼 ∈ ℤ)
43zred 11482 . . . . . . 7 (𝜑𝐼 ∈ ℝ)
52, 4resubcld 10458 . . . . . 6 (𝜑 → (𝐽𝐼) ∈ ℝ)
6 fourierdlem6.t . . . . . . 7 𝑇 = (𝐵𝐴)
7 fourierdlem6.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
8 fourierdlem6.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
97, 8resubcld 10458 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℝ)
106, 9syl5eqel 2705 . . . . . 6 (𝜑𝑇 ∈ ℝ)
115, 10remulcld 10070 . . . . 5 (𝜑 → ((𝐽𝐼) · 𝑇) ∈ ℝ)
12 fourierdlem6.altb . . . . . . . 8 (𝜑𝐴 < 𝐵)
138, 7posdifd 10614 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
1412, 13mpbid 222 . . . . . . 7 (𝜑 → 0 < (𝐵𝐴))
1514, 6syl6breqr 4695 . . . . . 6 (𝜑 → 0 < 𝑇)
1610, 15elrpd 11869 . . . . 5 (𝜑𝑇 ∈ ℝ+)
17 fourierdlem6.jel . . . . . . 7 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
18 fourierdlem6.iel . . . . . . 7 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
198, 7, 17, 18iccsuble 39745 . . . . . 6 (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) ≤ (𝐵𝐴))
202recnd 10068 . . . . . . . 8 (𝜑𝐽 ∈ ℂ)
214recnd 10068 . . . . . . . 8 (𝜑𝐼 ∈ ℂ)
2210recnd 10068 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
2320, 21, 22subdird 10487 . . . . . . 7 (𝜑 → ((𝐽𝐼) · 𝑇) = ((𝐽 · 𝑇) − (𝐼 · 𝑇)))
24 fourierdlem6.5 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
2524recnd 10068 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
262, 10remulcld 10070 . . . . . . . . 9 (𝜑 → (𝐽 · 𝑇) ∈ ℝ)
2726recnd 10068 . . . . . . . 8 (𝜑 → (𝐽 · 𝑇) ∈ ℂ)
284, 10remulcld 10070 . . . . . . . . 9 (𝜑 → (𝐼 · 𝑇) ∈ ℝ)
2928recnd 10068 . . . . . . . 8 (𝜑 → (𝐼 · 𝑇) ∈ ℂ)
3025, 27, 29pnpcand 10429 . . . . . . 7 (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) = ((𝐽 · 𝑇) − (𝐼 · 𝑇)))
3123, 30eqtr4d 2659 . . . . . 6 (𝜑 → ((𝐽𝐼) · 𝑇) = ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))))
326a1i 11 . . . . . 6 (𝜑𝑇 = (𝐵𝐴))
3319, 31, 323brtr4d 4685 . . . . 5 (𝜑 → ((𝐽𝐼) · 𝑇) ≤ 𝑇)
3411, 10, 16, 33lediv1dd 11930 . . . 4 (𝜑 → (((𝐽𝐼) · 𝑇) / 𝑇) ≤ (𝑇 / 𝑇))
355recnd 10068 . . . . 5 (𝜑 → (𝐽𝐼) ∈ ℂ)
3615gt0ne0d 10592 . . . . 5 (𝜑𝑇 ≠ 0)
3735, 22, 36divcan4d 10807 . . . 4 (𝜑 → (((𝐽𝐼) · 𝑇) / 𝑇) = (𝐽𝐼))
3822, 36dividd 10799 . . . 4 (𝜑 → (𝑇 / 𝑇) = 1)
3934, 37, 383brtr3d 4684 . . 3 (𝜑 → (𝐽𝐼) ≤ 1)
40 1red 10055 . . . 4 (𝜑 → 1 ∈ ℝ)
412, 4, 40lesubadd2d 10626 . . 3 (𝜑 → ((𝐽𝐼) ≤ 1 ↔ 𝐽 ≤ (𝐼 + 1)))
4239, 41mpbid 222 . 2 (𝜑𝐽 ≤ (𝐼 + 1))
43 fourierdlem6.iltj . . 3 (𝜑𝐼 < 𝐽)
44 zltp1le 11427 . . . 4 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
453, 1, 44syl2anc 693 . . 3 (𝜑 → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
4643, 45mpbid 222 . 2 (𝜑 → (𝐼 + 1) ≤ 𝐽)
474, 40readdcld 10069 . . 3 (𝜑 → (𝐼 + 1) ∈ ℝ)
482, 47letri3d 10179 . 2 (𝜑 → (𝐽 = (𝐼 + 1) ↔ (𝐽 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝐽)))
4942, 46, 48mpbir2and 957 1 (𝜑𝐽 = (𝐼 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cz 11377  [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-rp 11833  df-icc 12182
This theorem is referenced by:  fourierdlem35  40359  fourierdlem51  40374
  Copyright terms: Public domain W3C validator