![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem6 | Structured version Visualization version GIF version |
Description: 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem6.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
fourierdlem6.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
fourierdlem6.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
fourierdlem6.t | ⊢ 𝑇 = (𝐵 − 𝐴) |
fourierdlem6.5 | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
fourierdlem6.i | ⊢ (𝜑 → 𝐼 ∈ ℤ) |
fourierdlem6.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
fourierdlem6.iltj | ⊢ (𝜑 → 𝐼 < 𝐽) |
fourierdlem6.iel | ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) |
fourierdlem6.jel | ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) |
Ref | Expression |
---|---|
fourierdlem6 | ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem6.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
2 | 1 | zred 11482 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℝ) |
3 | fourierdlem6.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℤ) | |
4 | 3 | zred 11482 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ ℝ) |
5 | 2, 4 | resubcld 10458 | . . . . . 6 ⊢ (𝜑 → (𝐽 − 𝐼) ∈ ℝ) |
6 | fourierdlem6.t | . . . . . . 7 ⊢ 𝑇 = (𝐵 − 𝐴) | |
7 | fourierdlem6.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
8 | fourierdlem6.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
9 | 7, 8 | resubcld 10458 | . . . . . . 7 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
10 | 6, 9 | syl5eqel 2705 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ ℝ) |
11 | 5, 10 | remulcld 10070 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) ∈ ℝ) |
12 | fourierdlem6.altb | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 𝐵) | |
13 | 8, 7 | posdifd 10614 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
14 | 12, 13 | mpbid 222 | . . . . . . 7 ⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
15 | 14, 6 | syl6breqr 4695 | . . . . . 6 ⊢ (𝜑 → 0 < 𝑇) |
16 | 10, 15 | elrpd 11869 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ℝ+) |
17 | fourierdlem6.jel | . . . . . . 7 ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) | |
18 | fourierdlem6.iel | . . . . . . 7 ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) | |
19 | 8, 7, 17, 18 | iccsuble 39745 | . . . . . 6 ⊢ (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) ≤ (𝐵 − 𝐴)) |
20 | 2 | recnd 10068 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
21 | 4 | recnd 10068 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℂ) |
22 | 10 | recnd 10068 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
23 | 20, 21, 22 | subdird 10487 | . . . . . . 7 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) = ((𝐽 · 𝑇) − (𝐼 · 𝑇))) |
24 | fourierdlem6.5 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
25 | 24 | recnd 10068 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
26 | 2, 10 | remulcld 10070 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽 · 𝑇) ∈ ℝ) |
27 | 26 | recnd 10068 | . . . . . . . 8 ⊢ (𝜑 → (𝐽 · 𝑇) ∈ ℂ) |
28 | 4, 10 | remulcld 10070 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 · 𝑇) ∈ ℝ) |
29 | 28 | recnd 10068 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 · 𝑇) ∈ ℂ) |
30 | 25, 27, 29 | pnpcand 10429 | . . . . . . 7 ⊢ (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) = ((𝐽 · 𝑇) − (𝐼 · 𝑇))) |
31 | 23, 30 | eqtr4d 2659 | . . . . . 6 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) = ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇)))) |
32 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑇 = (𝐵 − 𝐴)) |
33 | 19, 31, 32 | 3brtr4d 4685 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) ≤ 𝑇) |
34 | 11, 10, 16, 33 | lediv1dd 11930 | . . . 4 ⊢ (𝜑 → (((𝐽 − 𝐼) · 𝑇) / 𝑇) ≤ (𝑇 / 𝑇)) |
35 | 5 | recnd 10068 | . . . . 5 ⊢ (𝜑 → (𝐽 − 𝐼) ∈ ℂ) |
36 | 15 | gt0ne0d 10592 | . . . . 5 ⊢ (𝜑 → 𝑇 ≠ 0) |
37 | 35, 22, 36 | divcan4d 10807 | . . . 4 ⊢ (𝜑 → (((𝐽 − 𝐼) · 𝑇) / 𝑇) = (𝐽 − 𝐼)) |
38 | 22, 36 | dividd 10799 | . . . 4 ⊢ (𝜑 → (𝑇 / 𝑇) = 1) |
39 | 34, 37, 38 | 3brtr3d 4684 | . . 3 ⊢ (𝜑 → (𝐽 − 𝐼) ≤ 1) |
40 | 1red 10055 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
41 | 2, 4, 40 | lesubadd2d 10626 | . . 3 ⊢ (𝜑 → ((𝐽 − 𝐼) ≤ 1 ↔ 𝐽 ≤ (𝐼 + 1))) |
42 | 39, 41 | mpbid 222 | . 2 ⊢ (𝜑 → 𝐽 ≤ (𝐼 + 1)) |
43 | fourierdlem6.iltj | . . 3 ⊢ (𝜑 → 𝐼 < 𝐽) | |
44 | zltp1le 11427 | . . . 4 ⊢ ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽)) | |
45 | 3, 1, 44 | syl2anc 693 | . . 3 ⊢ (𝜑 → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽)) |
46 | 43, 45 | mpbid 222 | . 2 ⊢ (𝜑 → (𝐼 + 1) ≤ 𝐽) |
47 | 4, 40 | readdcld 10069 | . . 3 ⊢ (𝜑 → (𝐼 + 1) ∈ ℝ) |
48 | 2, 47 | letri3d 10179 | . 2 ⊢ (𝜑 → (𝐽 = (𝐼 + 1) ↔ (𝐽 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝐽))) |
49 | 42, 46, 48 | mpbir2and 957 | 1 ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 (class class class)co 6650 ℝcr 9935 0cc0 9936 1c1 9937 + caddc 9939 · cmul 9941 < clt 10074 ≤ cle 10075 − cmin 10266 / cdiv 10684 ℤcz 11377 [,]cicc 12178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-rp 11833 df-icc 12182 |
This theorem is referenced by: fourierdlem35 40359 fourierdlem51 40374 |
Copyright terms: Public domain | W3C validator |