Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem6 Structured version   Visualization version   Unicode version

Theorem fourierdlem6 40330
Description:  X is in the periodic partition, when the considered interval is centered at  X. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem6.a  |-  ( ph  ->  A  e.  RR )
fourierdlem6.b  |-  ( ph  ->  B  e.  RR )
fourierdlem6.altb  |-  ( ph  ->  A  <  B )
fourierdlem6.t  |-  T  =  ( B  -  A
)
fourierdlem6.5  |-  ( ph  ->  X  e.  RR )
fourierdlem6.i  |-  ( ph  ->  I  e.  ZZ )
fourierdlem6.j  |-  ( ph  ->  J  e.  ZZ )
fourierdlem6.iltj  |-  ( ph  ->  I  <  J )
fourierdlem6.iel  |-  ( ph  ->  ( X  +  ( I  x.  T ) )  e.  ( A [,] B ) )
fourierdlem6.jel  |-  ( ph  ->  ( X  +  ( J  x.  T ) )  e.  ( A [,] B ) )
Assertion
Ref Expression
fourierdlem6  |-  ( ph  ->  J  =  ( I  +  1 ) )

Proof of Theorem fourierdlem6
StepHypRef Expression
1 fourierdlem6.j . . . . . . . 8  |-  ( ph  ->  J  e.  ZZ )
21zred 11482 . . . . . . 7  |-  ( ph  ->  J  e.  RR )
3 fourierdlem6.i . . . . . . . 8  |-  ( ph  ->  I  e.  ZZ )
43zred 11482 . . . . . . 7  |-  ( ph  ->  I  e.  RR )
52, 4resubcld 10458 . . . . . 6  |-  ( ph  ->  ( J  -  I
)  e.  RR )
6 fourierdlem6.t . . . . . . 7  |-  T  =  ( B  -  A
)
7 fourierdlem6.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
8 fourierdlem6.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
97, 8resubcld 10458 . . . . . . 7  |-  ( ph  ->  ( B  -  A
)  e.  RR )
106, 9syl5eqel 2705 . . . . . 6  |-  ( ph  ->  T  e.  RR )
115, 10remulcld 10070 . . . . 5  |-  ( ph  ->  ( ( J  -  I )  x.  T
)  e.  RR )
12 fourierdlem6.altb . . . . . . . 8  |-  ( ph  ->  A  <  B )
138, 7posdifd 10614 . . . . . . . 8  |-  ( ph  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
1412, 13mpbid 222 . . . . . . 7  |-  ( ph  ->  0  <  ( B  -  A ) )
1514, 6syl6breqr 4695 . . . . . 6  |-  ( ph  ->  0  <  T )
1610, 15elrpd 11869 . . . . 5  |-  ( ph  ->  T  e.  RR+ )
17 fourierdlem6.jel . . . . . . 7  |-  ( ph  ->  ( X  +  ( J  x.  T ) )  e.  ( A [,] B ) )
18 fourierdlem6.iel . . . . . . 7  |-  ( ph  ->  ( X  +  ( I  x.  T ) )  e.  ( A [,] B ) )
198, 7, 17, 18iccsuble 39745 . . . . . 6  |-  ( ph  ->  ( ( X  +  ( J  x.  T
) )  -  ( X  +  ( I  x.  T ) ) )  <_  ( B  -  A ) )
202recnd 10068 . . . . . . . 8  |-  ( ph  ->  J  e.  CC )
214recnd 10068 . . . . . . . 8  |-  ( ph  ->  I  e.  CC )
2210recnd 10068 . . . . . . . 8  |-  ( ph  ->  T  e.  CC )
2320, 21, 22subdird 10487 . . . . . . 7  |-  ( ph  ->  ( ( J  -  I )  x.  T
)  =  ( ( J  x.  T )  -  ( I  x.  T ) ) )
24 fourierdlem6.5 . . . . . . . . 9  |-  ( ph  ->  X  e.  RR )
2524recnd 10068 . . . . . . . 8  |-  ( ph  ->  X  e.  CC )
262, 10remulcld 10070 . . . . . . . . 9  |-  ( ph  ->  ( J  x.  T
)  e.  RR )
2726recnd 10068 . . . . . . . 8  |-  ( ph  ->  ( J  x.  T
)  e.  CC )
284, 10remulcld 10070 . . . . . . . . 9  |-  ( ph  ->  ( I  x.  T
)  e.  RR )
2928recnd 10068 . . . . . . . 8  |-  ( ph  ->  ( I  x.  T
)  e.  CC )
3025, 27, 29pnpcand 10429 . . . . . . 7  |-  ( ph  ->  ( ( X  +  ( J  x.  T
) )  -  ( X  +  ( I  x.  T ) ) )  =  ( ( J  x.  T )  -  ( I  x.  T
) ) )
3123, 30eqtr4d 2659 . . . . . 6  |-  ( ph  ->  ( ( J  -  I )  x.  T
)  =  ( ( X  +  ( J  x.  T ) )  -  ( X  +  ( I  x.  T
) ) ) )
326a1i 11 . . . . . 6  |-  ( ph  ->  T  =  ( B  -  A ) )
3319, 31, 323brtr4d 4685 . . . . 5  |-  ( ph  ->  ( ( J  -  I )  x.  T
)  <_  T )
3411, 10, 16, 33lediv1dd 11930 . . . 4  |-  ( ph  ->  ( ( ( J  -  I )  x.  T )  /  T
)  <_  ( T  /  T ) )
355recnd 10068 . . . . 5  |-  ( ph  ->  ( J  -  I
)  e.  CC )
3615gt0ne0d 10592 . . . . 5  |-  ( ph  ->  T  =/=  0 )
3735, 22, 36divcan4d 10807 . . . 4  |-  ( ph  ->  ( ( ( J  -  I )  x.  T )  /  T
)  =  ( J  -  I ) )
3822, 36dividd 10799 . . . 4  |-  ( ph  ->  ( T  /  T
)  =  1 )
3934, 37, 383brtr3d 4684 . . 3  |-  ( ph  ->  ( J  -  I
)  <_  1 )
40 1red 10055 . . . 4  |-  ( ph  ->  1  e.  RR )
412, 4, 40lesubadd2d 10626 . . 3  |-  ( ph  ->  ( ( J  -  I )  <_  1  <->  J  <_  ( I  + 
1 ) ) )
4239, 41mpbid 222 . 2  |-  ( ph  ->  J  <_  ( I  +  1 ) )
43 fourierdlem6.iltj . . 3  |-  ( ph  ->  I  <  J )
44 zltp1le 11427 . . . 4  |-  ( ( I  e.  ZZ  /\  J  e.  ZZ )  ->  ( I  <  J  <->  ( I  +  1 )  <_  J ) )
453, 1, 44syl2anc 693 . . 3  |-  ( ph  ->  ( I  <  J  <->  ( I  +  1 )  <_  J ) )
4643, 45mpbid 222 . 2  |-  ( ph  ->  ( I  +  1 )  <_  J )
474, 40readdcld 10069 . . 3  |-  ( ph  ->  ( I  +  1 )  e.  RR )
482, 47letri3d 10179 . 2  |-  ( ph  ->  ( J  =  ( I  +  1 )  <-> 
( J  <_  (
I  +  1 )  /\  ( I  + 
1 )  <_  J
) ) )
4942, 46, 48mpbir2and 957 1  |-  ( ph  ->  J  =  ( I  +  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   ZZcz 11377   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-rp 11833  df-icc 12182
This theorem is referenced by:  fourierdlem35  40359  fourierdlem51  40374
  Copyright terms: Public domain W3C validator