Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fperiodmul Structured version   Visualization version   Unicode version

Theorem fperiodmul 39518
Description: A function with period T is also periodic with period multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fperiodmul.f  |-  ( ph  ->  F : RR --> CC )
fperiodmul.t  |-  ( ph  ->  T  e.  RR )
fperiodmul.n  |-  ( ph  ->  N  e.  ZZ )
fperiodmul.x  |-  ( ph  ->  X  e.  RR )
fperiodmul.per  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 ( x  +  T ) )  =  ( F `  x
) )
Assertion
Ref Expression
fperiodmul  |-  ( ph  ->  ( F `  ( X  +  ( N  x.  T ) ) )  =  ( F `  X ) )
Distinct variable groups:    x, F    x, N    x, T    x, X    ph, x

Proof of Theorem fperiodmul
StepHypRef Expression
1 fperiodmul.f . . . 4  |-  ( ph  ->  F : RR --> CC )
21adantr 481 . . 3  |-  ( (
ph  /\  N  e.  NN0 )  ->  F : RR
--> CC )
3 fperiodmul.t . . . 4  |-  ( ph  ->  T  e.  RR )
43adantr 481 . . 3  |-  ( (
ph  /\  N  e.  NN0 )  ->  T  e.  RR )
5 simpr 477 . . 3  |-  ( (
ph  /\  N  e.  NN0 )  ->  N  e.  NN0 )
6 fperiodmul.x . . . 4  |-  ( ph  ->  X  e.  RR )
76adantr 481 . . 3  |-  ( (
ph  /\  N  e.  NN0 )  ->  X  e.  RR )
8 fperiodmul.per . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 ( x  +  T ) )  =  ( F `  x
) )
98adantlr 751 . . 3  |-  ( ( ( ph  /\  N  e.  NN0 )  /\  x  e.  RR )  ->  ( F `  ( x  +  T ) )  =  ( F `  x
) )
102, 4, 5, 7, 9fperiodmullem 39517 . 2  |-  ( (
ph  /\  N  e.  NN0 )  ->  ( F `  ( X  +  ( N  x.  T ) ) )  =  ( F `  X ) )
116recnd 10068 . . . . . . 7  |-  ( ph  ->  X  e.  CC )
12 fperiodmul.n . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
1312zcnd 11483 . . . . . . . 8  |-  ( ph  ->  N  e.  CC )
143recnd 10068 . . . . . . . 8  |-  ( ph  ->  T  e.  CC )
1513, 14mulcld 10060 . . . . . . 7  |-  ( ph  ->  ( N  x.  T
)  e.  CC )
1611, 15subnegd 10399 . . . . . 6  |-  ( ph  ->  ( X  -  -u ( N  x.  T )
)  =  ( X  +  ( N  x.  T ) ) )
1713, 14mulneg1d 10483 . . . . . . . 8  |-  ( ph  ->  ( -u N  x.  T )  =  -u ( N  x.  T
) )
1817eqcomd 2628 . . . . . . 7  |-  ( ph  -> 
-u ( N  x.  T )  =  (
-u N  x.  T
) )
1918oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( X  -  -u ( N  x.  T )
)  =  ( X  -  ( -u N  x.  T ) ) )
2016, 19eqtr3d 2658 . . . . 5  |-  ( ph  ->  ( X  +  ( N  x.  T ) )  =  ( X  -  ( -u N  x.  T ) ) )
2120fveq2d 6195 . . . 4  |-  ( ph  ->  ( F `  ( X  +  ( N  x.  T ) ) )  =  ( F `  ( X  -  ( -u N  x.  T ) ) ) )
2221adantr 481 . . 3  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  ( F `  ( X  +  ( N  x.  T ) ) )  =  ( F `  ( X  -  ( -u N  x.  T ) ) ) )
231adantr 481 . . . 4  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  F : RR --> CC )
243adantr 481 . . . 4  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  T  e.  RR )
25 znnn0nn 11489 . . . . . 6  |-  ( ( N  e.  ZZ  /\  -.  N  e.  NN0 )  ->  -u N  e.  NN )
2612, 25sylan 488 . . . . 5  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  -u N  e.  NN )
2726nnnn0d 11351 . . . 4  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  -u N  e.  NN0 )
286adantr 481 . . . . 5  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  X  e.  RR )
2912adantr 481 . . . . . . . 8  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  N  e.  ZZ )
3029zred 11482 . . . . . . 7  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  N  e.  RR )
3130renegcld 10457 . . . . . 6  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  -u N  e.  RR )
3231, 24remulcld 10070 . . . . 5  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  ( -u N  x.  T )  e.  RR )
3328, 32resubcld 10458 . . . 4  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  ( X  -  ( -u N  x.  T ) )  e.  RR )
348adantlr 751 . . . 4  |-  ( ( ( ph  /\  -.  N  e.  NN0 )  /\  x  e.  RR )  ->  ( F `  (
x  +  T ) )  =  ( F `
 x ) )
3523, 24, 27, 33, 34fperiodmullem 39517 . . 3  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  ( F `  ( ( X  -  ( -u N  x.  T ) )  +  ( -u N  x.  T ) ) )  =  ( F `  ( X  -  ( -u N  x.  T ) ) ) )
3628recnd 10068 . . . . 5  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  X  e.  CC )
3730recnd 10068 . . . . . . 7  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  N  e.  CC )
3837negcld 10379 . . . . . 6  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  -u N  e.  CC )
3924recnd 10068 . . . . . 6  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  T  e.  CC )
4038, 39mulcld 10060 . . . . 5  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  ( -u N  x.  T )  e.  CC )
4136, 40npcand 10396 . . . 4  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  (
( X  -  ( -u N  x.  T ) )  +  ( -u N  x.  T )
)  =  X )
4241fveq2d 6195 . . 3  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  ( F `  ( ( X  -  ( -u N  x.  T ) )  +  ( -u N  x.  T ) ) )  =  ( F `  X ) )
4322, 35, 423eqtr2d 2662 . 2  |-  ( (
ph  /\  -.  N  e.  NN0 )  ->  ( F `  ( X  +  ( N  x.  T ) ) )  =  ( F `  X ) )
4410, 43pm2.61dan 832 1  |-  ( ph  ->  ( F `  ( X  +  ( N  x.  T ) ) )  =  ( F `  X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267   NNcn 11020   NN0cn0 11292   ZZcz 11377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378
This theorem is referenced by:  fourierdlem89  40412  fourierdlem90  40413  fourierdlem91  40414  fourierdlem94  40417  fourierdlem97  40420  fourierdlem113  40436
  Copyright terms: Public domain W3C validator