MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem8 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem8 16787
Description: Lemma 8 for funcestrcsetc 16789. (Contributed by AV, 15-Feb-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))))
Assertion
Ref Expression
funcestrcsetclem8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐸)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcestrcsetclem8
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6174 . . . 4 ( I ↾ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))):((Base‘𝑌) ↑𝑚 (Base‘𝑋))–1-1-onto→((Base‘𝑌) ↑𝑚 (Base‘𝑋))
2 f1of 6137 . . . 4 (( I ↾ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))):((Base‘𝑌) ↑𝑚 (Base‘𝑋))–1-1-onto→((Base‘𝑌) ↑𝑚 (Base‘𝑋)) → ( I ↾ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))):((Base‘𝑌) ↑𝑚 (Base‘𝑋))⟶((Base‘𝑌) ↑𝑚 (Base‘𝑋)))
31, 2mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))):((Base‘𝑌) ↑𝑚 (Base‘𝑋))⟶((Base‘𝑌) ↑𝑚 (Base‘𝑋)))
4 elmapi 7879 . . . . 5 (𝑓 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) → 𝑓:(Base‘𝑋)⟶(Base‘𝑌))
5 fvex 6201 . . . . . . . . . 10 (Base‘𝑌) ∈ V
6 fvex 6201 . . . . . . . . . 10 (Base‘𝑋) ∈ V
75, 6pm3.2i 471 . . . . . . . . 9 ((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V)
8 elmapg 7870 . . . . . . . . . 10 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ↔ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)))
98bicomd 213 . . . . . . . . 9 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))))
107, 9mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))))
1110biimpa 501 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)))
12 funcestrcsetc.e . . . . . . . . . . 11 𝐸 = (ExtStrCat‘𝑈)
13 funcestrcsetc.s . . . . . . . . . . 11 𝑆 = (SetCat‘𝑈)
14 funcestrcsetc.b . . . . . . . . . . 11 𝐵 = (Base‘𝐸)
15 funcestrcsetc.c . . . . . . . . . . 11 𝐶 = (Base‘𝑆)
16 funcestrcsetc.u . . . . . . . . . . 11 (𝜑𝑈 ∈ WUni)
17 funcestrcsetc.f . . . . . . . . . . 11 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
1812, 13, 14, 15, 16, 17funcestrcsetclem1 16780 . . . . . . . . . 10 ((𝜑𝑌𝐵) → (𝐹𝑌) = (Base‘𝑌))
1918adantrl 752 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) = (Base‘𝑌))
2012, 13, 14, 15, 16, 17funcestrcsetclem1 16780 . . . . . . . . . 10 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
2120adantrr 753 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) = (Base‘𝑋))
2219, 21oveq12d 6668 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑌) ↑𝑚 (𝐹𝑋)) = ((Base‘𝑌) ↑𝑚 (Base‘𝑋)))
2322adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → ((𝐹𝑌) ↑𝑚 (𝐹𝑋)) = ((Base‘𝑌) ↑𝑚 (Base‘𝑋)))
2411, 23eleqtrrd 2704 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((𝐹𝑌) ↑𝑚 (𝐹𝑋)))
2524ex 450 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) → 𝑓 ∈ ((𝐹𝑌) ↑𝑚 (𝐹𝑋))))
264, 25syl5 34 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) → 𝑓 ∈ ((𝐹𝑌) ↑𝑚 (𝐹𝑋))))
2726ssrdv 3609 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ⊆ ((𝐹𝑌) ↑𝑚 (𝐹𝑋)))
283, 27fssd 6057 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))):((Base‘𝑌) ↑𝑚 (Base‘𝑋))⟶((𝐹𝑌) ↑𝑚 (𝐹𝑋)))
29 funcestrcsetc.g . . . 4 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))))
30 eqid 2622 . . . 4 (Base‘𝑋) = (Base‘𝑋)
31 eqid 2622 . . . 4 (Base‘𝑌) = (Base‘𝑌)
3212, 13, 14, 15, 16, 17, 29, 30, 31funcestrcsetclem5 16784 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))))
3316adantr 481 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑈 ∈ WUni)
34 eqid 2622 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
3512, 16estrcbas 16765 . . . . . . . . 9 (𝜑𝑈 = (Base‘𝐸))
3635, 14syl6reqr 2675 . . . . . . . 8 (𝜑𝐵 = 𝑈)
3736eleq2d 2687 . . . . . . 7 (𝜑 → (𝑋𝐵𝑋𝑈))
3837biimpcd 239 . . . . . 6 (𝑋𝐵 → (𝜑𝑋𝑈))
3938adantr 481 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝜑𝑋𝑈))
4039impcom 446 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝑈)
4136eleq2d 2687 . . . . . . 7 (𝜑 → (𝑌𝐵𝑌𝑈))
4241biimpd 219 . . . . . 6 (𝜑 → (𝑌𝐵𝑌𝑈))
4342adantld 483 . . . . 5 (𝜑 → ((𝑋𝐵𝑌𝐵) → 𝑌𝑈))
4443imp 445 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝑈)
4512, 33, 34, 40, 44, 30, 31estrchom 16767 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(Hom ‘𝐸)𝑌) = ((Base‘𝑌) ↑𝑚 (Base‘𝑋)))
46 eqid 2622 . . . 4 (Hom ‘𝑆) = (Hom ‘𝑆)
4712, 13, 14, 15, 16, 17funcestrcsetclem2 16781 . . . . 5 ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
4847adantrr 753 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝑈)
4912, 13, 14, 15, 16, 17funcestrcsetclem2 16781 . . . . 5 ((𝜑𝑌𝐵) → (𝐹𝑌) ∈ 𝑈)
5049adantrl 752 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝑈)
5113, 33, 46, 48, 50setchom 16730 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)) = ((𝐹𝑌) ↑𝑚 (𝐹𝑋)))
5232, 45, 51feq123d 6034 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋𝐺𝑌):(𝑋(Hom ‘𝐸)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)) ↔ ( I ↾ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))):((Base‘𝑌) ↑𝑚 (Base‘𝑋))⟶((𝐹𝑌) ↑𝑚 (𝐹𝑋))))
5328, 52mpbird 247 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐸)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cmpt 4729   I cid 5023  cres 5116  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  WUnicwun 9522  Basecbs 15857  Hom chom 15952  SetCatcsetc 16725  ExtStrCatcestrc 16762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-wun 9524  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-setc 16726  df-estrc 16763
This theorem is referenced by:  funcestrcsetc  16789  fthestrcsetc  16790  fullestrcsetc  16791
  Copyright terms: Public domain W3C validator