MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoisum1c Structured version   Visualization version   GIF version

Theorem geoisum1c 14611
Description: The infinite sum of 𝐴 · (𝑅↑1) + 𝐴 · (𝑅↑2)... is (𝐴 · 𝑅) / (1 − 𝑅). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisum1c ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅)))
Distinct variable groups:   𝐴,𝑘   𝑅,𝑘

Proof of Theorem geoisum1c
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝐴 ∈ ℂ)
2 simp2 1062 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝑅 ∈ ℂ)
3 ax-1cn 9994 . . . 4 1 ∈ ℂ
4 subcl 10280 . . . 4 ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (1 − 𝑅) ∈ ℂ)
53, 2, 4sylancr 695 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ∈ ℂ)
6 simp3 1063 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (abs‘𝑅) < 1)
7 1re 10039 . . . . . . . 8 1 ∈ ℝ
87ltnri 10146 . . . . . . 7 ¬ 1 < 1
9 abs1 14037 . . . . . . . . 9 (abs‘1) = 1
10 fveq2 6191 . . . . . . . . 9 (1 = 𝑅 → (abs‘1) = (abs‘𝑅))
119, 10syl5eqr 2670 . . . . . . . 8 (1 = 𝑅 → 1 = (abs‘𝑅))
1211breq1d 4663 . . . . . . 7 (1 = 𝑅 → (1 < 1 ↔ (abs‘𝑅) < 1))
138, 12mtbii 316 . . . . . 6 (1 = 𝑅 → ¬ (abs‘𝑅) < 1)
1413necon2ai 2823 . . . . 5 ((abs‘𝑅) < 1 → 1 ≠ 𝑅)
156, 14syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ≠ 𝑅)
16 subeq0 10307 . . . . . 6 ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((1 − 𝑅) = 0 ↔ 1 = 𝑅))
1716necon3bid 2838 . . . . 5 ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((1 − 𝑅) ≠ 0 ↔ 1 ≠ 𝑅))
183, 2, 17sylancr 695 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((1 − 𝑅) ≠ 0 ↔ 1 ≠ 𝑅))
1915, 18mpbird 247 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ≠ 0)
201, 2, 5, 19divassd 10836 . 2 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((𝐴 · 𝑅) / (1 − 𝑅)) = (𝐴 · (𝑅 / (1 − 𝑅))))
21 geoisum1 14610 . . . 4 ((𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅𝑘) = (𝑅 / (1 − 𝑅)))
22213adant1 1079 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅𝑘) = (𝑅 / (1 − 𝑅)))
2322oveq2d 6666 . 2 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅𝑘)) = (𝐴 · (𝑅 / (1 − 𝑅))))
24 nnuz 11723 . . 3 ℕ = (ℤ‘1)
25 1zzd 11408 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℤ)
26 oveq2 6658 . . . . 5 (𝑛 = 𝑘 → (𝑅𝑛) = (𝑅𝑘))
27 eqid 2622 . . . . 5 (𝑛 ∈ ℕ ↦ (𝑅𝑛)) = (𝑛 ∈ ℕ ↦ (𝑅𝑛))
28 ovex 6678 . . . . 5 (𝑅𝑘) ∈ V
2926, 27, 28fvmpt 6282 . . . 4 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑅𝑛))‘𝑘) = (𝑅𝑘))
3029adantl 482 . . 3 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑅𝑛))‘𝑘) = (𝑅𝑘))
31 nnnn0 11299 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
32 expcl 12878 . . . 4 ((𝑅 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ ℂ)
332, 31, 32syl2an 494 . . 3 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → (𝑅𝑘) ∈ ℂ)
34 1nn0 11308 . . . . . 6 1 ∈ ℕ0
3534a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℕ0)
36 elnnuz 11724 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
3736, 30sylan2br 493 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (𝑅𝑛))‘𝑘) = (𝑅𝑘))
382, 6, 35, 37geolim2 14602 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅)))
39 seqex 12803 . . . . 5 seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ∈ V
40 ovex 6678 . . . . 5 ((𝑅↑1) / (1 − 𝑅)) ∈ V
4139, 40breldm 5329 . . . 4 (seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅)) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ∈ dom ⇝ )
4238, 41syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ∈ dom ⇝ )
4324, 25, 30, 33, 42, 1isummulc2 14493 . 2 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅𝑘)) = Σ𝑘 ∈ ℕ (𝐴 · (𝑅𝑘)))
4420, 23, 433eqtr2rd 2663 1 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cmpt 4729  dom cdm 5114  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  cuz 11687  seqcseq 12801  cexp 12860  abscabs 13974  cli 14215  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  0.999...  14612  0.999...OLD  14613
  Copyright terms: Public domain W3C validator