![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsum2dlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for gsum2d 18371. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
Ref | Expression |
---|---|
gsum2d.b | ⊢ 𝐵 = (Base‘𝐺) |
gsum2d.z | ⊢ 0 = (0g‘𝐺) |
gsum2d.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsum2d.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsum2d.r | ⊢ (𝜑 → Rel 𝐴) |
gsum2d.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
gsum2d.s | ⊢ (𝜑 → dom 𝐴 ⊆ 𝐷) |
gsum2d.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
gsum2d.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
gsum2dlem1 | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsum2d.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsum2d.z | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | gsum2d.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsum2d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | imaexg 7103 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ {𝑗}) ∈ V) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 “ {𝑗}) ∈ V) |
7 | vex 3203 | . . . . 5 ⊢ 𝑗 ∈ V | |
8 | vex 3203 | . . . . 5 ⊢ 𝑘 ∈ V | |
9 | 7, 8 | elimasn 5490 | . . . 4 ⊢ (𝑘 ∈ (𝐴 “ {𝑗}) ↔ 〈𝑗, 𝑘〉 ∈ 𝐴) |
10 | df-ov 6653 | . . . . 5 ⊢ (𝑗𝐹𝑘) = (𝐹‘〈𝑗, 𝑘〉) | |
11 | gsum2d.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
12 | 11 | ffvelrnda 6359 | . . . . 5 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ 𝐴) → (𝐹‘〈𝑗, 𝑘〉) ∈ 𝐵) |
13 | 10, 12 | syl5eqel 2705 | . . . 4 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ 𝐴) → (𝑗𝐹𝑘) ∈ 𝐵) |
14 | 9, 13 | sylan2b 492 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 “ {𝑗})) → (𝑗𝐹𝑘) ∈ 𝐵) |
15 | eqid 2622 | . . 3 ⊢ (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) | |
16 | 14, 15 | fmptd 6385 | . 2 ⊢ (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)):(𝐴 “ {𝑗})⟶𝐵) |
17 | gsum2d.w | . . . . 5 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
18 | 17 | fsuppimpd 8282 | . . . 4 ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) |
19 | rnfi 8249 | . . . 4 ⊢ ((𝐹 supp 0 ) ∈ Fin → ran (𝐹 supp 0 ) ∈ Fin) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝐹 supp 0 ) ∈ Fin) |
21 | 9 | biimpi 206 | . . . . . . 7 ⊢ (𝑘 ∈ (𝐴 “ {𝑗}) → 〈𝑗, 𝑘〉 ∈ 𝐴) |
22 | 7, 8 | opelrn 5357 | . . . . . . . 8 ⊢ (〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ) → 𝑘 ∈ ran (𝐹 supp 0 )) |
23 | 22 | con3i 150 | . . . . . . 7 ⊢ (¬ 𝑘 ∈ ran (𝐹 supp 0 ) → ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) |
24 | 21, 23 | anim12i 590 | . . . . . 6 ⊢ ((𝑘 ∈ (𝐴 “ {𝑗}) ∧ ¬ 𝑘 ∈ ran (𝐹 supp 0 )) → (〈𝑗, 𝑘〉 ∈ 𝐴 ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ))) |
25 | eldif 3584 | . . . . . 6 ⊢ (𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 )) ↔ (𝑘 ∈ (𝐴 “ {𝑗}) ∧ ¬ 𝑘 ∈ ran (𝐹 supp 0 ))) | |
26 | eldif 3584 | . . . . . 6 ⊢ (〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 )) ↔ (〈𝑗, 𝑘〉 ∈ 𝐴 ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ))) | |
27 | 24, 25, 26 | 3imtr4i 281 | . . . . 5 ⊢ (𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 )) → 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) |
28 | ssid 3624 | . . . . . . . 8 ⊢ (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ) | |
29 | 28 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) |
30 | fvex 6201 | . . . . . . . . 9 ⊢ (0g‘𝐺) ∈ V | |
31 | 2, 30 | eqeltri 2697 | . . . . . . . 8 ⊢ 0 ∈ V |
32 | 31 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
33 | 11, 29, 4, 32 | suppssr 7326 | . . . . . 6 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝐹‘〈𝑗, 𝑘〉) = 0 ) |
34 | 10, 33 | syl5eq 2668 | . . . . 5 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 ) |
35 | 27, 34 | sylan2 491 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 ) |
36 | 35, 6 | suppss2 7329 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ⊆ ran (𝐹 supp 0 )) |
37 | ssfi 8180 | . . 3 ⊢ ((ran (𝐹 supp 0 ) ∈ Fin ∧ ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ⊆ ran (𝐹 supp 0 )) → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈ Fin) | |
38 | 20, 36, 37 | syl2anc 693 | . 2 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈ Fin) |
39 | 1, 2, 3, 6, 16, 38 | gsumcl2 18315 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∖ cdif 3571 ⊆ wss 3574 {csn 4177 〈cop 4183 class class class wbr 4653 ↦ cmpt 4729 dom cdm 5114 ran crn 5115 “ cima 5117 Rel wrel 5119 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 supp csupp 7295 Fincfn 7955 finSupp cfsupp 8275 Basecbs 15857 0gc0g 16100 Σg cgsu 16101 CMndccmn 18193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-0g 16102 df-gsum 16103 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-cntz 17750 df-cmn 18195 |
This theorem is referenced by: gsum2dlem2 18370 gsum2d 18371 |
Copyright terms: Public domain | W3C validator |