![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hash2iun1dif1 | Structured version Visualization version GIF version |
Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.) |
Ref | Expression |
---|---|
hash2iun1dif1.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
hash2iun1dif1.b | ⊢ 𝐵 = (𝐴 ∖ {𝑥}) |
hash2iun1dif1.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) |
hash2iun1dif1.da | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) |
hash2iun1dif1.db | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) |
hash2iun1dif1.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (#‘𝐶) = 1) |
Ref | Expression |
---|---|
hash2iun1dif1 | ⊢ (𝜑 → (#‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = ((#‘𝐴) · ((#‘𝐴) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hash2iun1dif1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | hash2iun1dif1.b | . . . 4 ⊢ 𝐵 = (𝐴 ∖ {𝑥}) | |
3 | diffi 8192 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin) | |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∖ {𝑥}) ∈ Fin) |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin) |
6 | 2, 5 | syl5eqel 2705 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) |
7 | hash2iun1dif1.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) | |
8 | hash2iun1dif1.da | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) | |
9 | hash2iun1dif1.db | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) | |
10 | 1, 6, 7, 8, 9 | hash2iun 14555 | . 2 ⊢ (𝜑 → (#‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 (#‘𝐶)) |
11 | hash2iun1dif1.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (#‘𝐶) = 1) | |
12 | 11 | 2sumeq2dv 14436 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 (#‘𝐶) = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 1) |
13 | 1cnd 10056 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 1 ∈ ℂ) | |
14 | fsumconst 14522 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑦 ∈ 𝐵 1 = ((#‘𝐵) · 1)) | |
15 | 6, 13, 14 | syl2anc 693 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Σ𝑦 ∈ 𝐵 1 = ((#‘𝐵) · 1)) |
16 | 15 | sumeq2dv 14433 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 1 = Σ𝑥 ∈ 𝐴 ((#‘𝐵) · 1)) |
17 | 2 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = (𝐴 ∖ {𝑥})) |
18 | 17 | fveq2d 6195 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (#‘𝐵) = (#‘(𝐴 ∖ {𝑥}))) |
19 | hashdifsn 13202 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝐴) → (#‘(𝐴 ∖ {𝑥})) = ((#‘𝐴) − 1)) | |
20 | 1, 19 | sylan 488 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (#‘(𝐴 ∖ {𝑥})) = ((#‘𝐴) − 1)) |
21 | 18, 20 | eqtrd 2656 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (#‘𝐵) = ((#‘𝐴) − 1)) |
22 | 21 | oveq1d 6665 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((#‘𝐵) · 1) = (((#‘𝐴) − 1) · 1)) |
23 | 22 | sumeq2dv 14433 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((#‘𝐵) · 1) = Σ𝑥 ∈ 𝐴 (((#‘𝐴) − 1) · 1)) |
24 | hashcl 13147 | . . . . . . . . 9 ⊢ (𝐴 ∈ Fin → (#‘𝐴) ∈ ℕ0) | |
25 | 1, 24 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (#‘𝐴) ∈ ℕ0) |
26 | 25 | nn0cnd 11353 | . . . . . . 7 ⊢ (𝜑 → (#‘𝐴) ∈ ℂ) |
27 | peano2cnm 10347 | . . . . . . 7 ⊢ ((#‘𝐴) ∈ ℂ → ((#‘𝐴) − 1) ∈ ℂ) | |
28 | 26, 27 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((#‘𝐴) − 1) ∈ ℂ) |
29 | 28 | mulid1d 10057 | . . . . 5 ⊢ (𝜑 → (((#‘𝐴) − 1) · 1) = ((#‘𝐴) − 1)) |
30 | 29 | sumeq2ad 14434 | . . . 4 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 (((#‘𝐴) − 1) · 1) = Σ𝑥 ∈ 𝐴 ((#‘𝐴) − 1)) |
31 | fsumconst 14522 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ((#‘𝐴) − 1) ∈ ℂ) → Σ𝑥 ∈ 𝐴 ((#‘𝐴) − 1) = ((#‘𝐴) · ((#‘𝐴) − 1))) | |
32 | 1, 28, 31 | syl2anc 693 | . . . 4 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((#‘𝐴) − 1) = ((#‘𝐴) · ((#‘𝐴) − 1))) |
33 | 30, 32 | eqtrd 2656 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 (((#‘𝐴) − 1) · 1) = ((#‘𝐴) · ((#‘𝐴) − 1))) |
34 | 16, 23, 33 | 3eqtrd 2660 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 1 = ((#‘𝐴) · ((#‘𝐴) − 1))) |
35 | 10, 12, 34 | 3eqtrd 2660 | 1 ⊢ (𝜑 → (#‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = ((#‘𝐴) · ((#‘𝐴) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∖ cdif 3571 {csn 4177 ∪ ciun 4520 Disj wdisj 4620 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 ℂcc 9934 1c1 9937 · cmul 9941 − cmin 10266 ℕ0cn0 11292 #chash 13117 Σcsu 14416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-disj 4621 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 |
This theorem is referenced by: frgrhash2wsp 27196 fusgreghash2wspv 27199 |
Copyright terms: Public domain | W3C validator |