![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhsssm | Structured version Visualization version GIF version |
Description: The scalar multiplication operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhss.1 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
Ref | Expression |
---|---|
hhsssm | ⊢ ( ·ℎ ↾ (ℂ × 𝐻)) = ( ·𝑠OLD ‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . 3 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
2 | 1 | smfval 27460 | . 2 ⊢ ( ·𝑠OLD ‘𝑊) = (2nd ‘(1st ‘𝑊)) |
3 | hhss.1 | . . . . 5 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
4 | 3 | fveq2i 6194 | . . . 4 ⊢ (1st ‘𝑊) = (1st ‘〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉) |
5 | opex 4932 | . . . . 5 ⊢ 〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉 ∈ V | |
6 | normf 27980 | . . . . . . 7 ⊢ normℎ: ℋ⟶ℝ | |
7 | ax-hilex 27856 | . . . . . . 7 ⊢ ℋ ∈ V | |
8 | fex 6490 | . . . . . . 7 ⊢ ((normℎ: ℋ⟶ℝ ∧ ℋ ∈ V) → normℎ ∈ V) | |
9 | 6, 7, 8 | mp2an 708 | . . . . . 6 ⊢ normℎ ∈ V |
10 | 9 | resex 5443 | . . . . 5 ⊢ (normℎ ↾ 𝐻) ∈ V |
11 | 5, 10 | op1st 7176 | . . . 4 ⊢ (1st ‘〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉) = 〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉 |
12 | 4, 11 | eqtri 2644 | . . 3 ⊢ (1st ‘𝑊) = 〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉 |
13 | 12 | fveq2i 6194 | . 2 ⊢ (2nd ‘(1st ‘𝑊)) = (2nd ‘〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉) |
14 | hilablo 28017 | . . . 4 ⊢ +ℎ ∈ AbelOp | |
15 | resexg 5442 | . . . 4 ⊢ ( +ℎ ∈ AbelOp → ( +ℎ ↾ (𝐻 × 𝐻)) ∈ V) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ V |
17 | hvmulex 27868 | . . . 4 ⊢ ·ℎ ∈ V | |
18 | 17 | resex 5443 | . . 3 ⊢ ( ·ℎ ↾ (ℂ × 𝐻)) ∈ V |
19 | 16, 18 | op2nd 7177 | . 2 ⊢ (2nd ‘〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉) = ( ·ℎ ↾ (ℂ × 𝐻)) |
20 | 2, 13, 19 | 3eqtrri 2649 | 1 ⊢ ( ·ℎ ↾ (ℂ × 𝐻)) = ( ·𝑠OLD ‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 Vcvv 3200 〈cop 4183 × cxp 5112 ↾ cres 5116 ⟶wf 5884 ‘cfv 5888 1st c1st 7166 2nd c2nd 7167 ℂcc 9934 ℝcr 9935 AbelOpcablo 27398 ·𝑠OLD cns 27442 ℋchil 27776 +ℎ cva 27777 ·ℎ csm 27778 normℎcno 27780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-hilex 27856 ax-hfvadd 27857 ax-hvcom 27858 ax-hvass 27859 ax-hv0cl 27860 ax-hvaddid 27861 ax-hfvmul 27862 ax-hvmulid 27863 ax-hvdistr2 27866 ax-hvmul0 27867 ax-hfi 27936 ax-his1 27939 ax-his3 27941 ax-his4 27942 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-grpo 27347 df-ablo 27399 df-sm 27452 df-hnorm 27825 df-hvsub 27828 |
This theorem is referenced by: hhsst 28123 hhsssh2 28127 |
Copyright terms: Public domain | W3C validator |