Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0less Structured version   Visualization version   GIF version

Theorem sge0less 40609
Description: A shorter sum of nonnegative extended reals is smaller than a longer one. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0less.1 (𝜑𝑋𝑉)
sge0less.2 (𝜑𝐹:𝑋⟶(0[,]+∞))
Assertion
Ref Expression
sge0less (𝜑 → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))

Proof of Theorem sge0less
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0less.1 . . . . . . 7 (𝜑𝑋𝑉)
2 inex1g 4801 . . . . . . 7 (𝑋𝑉 → (𝑋𝑌) ∈ V)
31, 2syl 17 . . . . . 6 (𝜑 → (𝑋𝑌) ∈ V)
4 sge0less.2 . . . . . . 7 (𝜑𝐹:𝑋⟶(0[,]+∞))
5 fresin 6073 . . . . . . 7 (𝐹:𝑋⟶(0[,]+∞) → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
64, 5syl 17 . . . . . 6 (𝜑 → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
73, 6sge0xrcl 40602 . . . . 5 (𝜑 → (Σ^‘(𝐹𝑌)) ∈ ℝ*)
8 pnfge 11964 . . . . 5 ((Σ^‘(𝐹𝑌)) ∈ ℝ* → (Σ^‘(𝐹𝑌)) ≤ +∞)
97, 8syl 17 . . . 4 (𝜑 → (Σ^‘(𝐹𝑌)) ≤ +∞)
109adantr 481 . . 3 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^‘(𝐹𝑌)) ≤ +∞)
11 id 22 . . . . 5 ((Σ^𝐹) = +∞ → (Σ^𝐹) = +∞)
1211eqcomd 2628 . . . 4 ((Σ^𝐹) = +∞ → +∞ = (Σ^𝐹))
1312adantl 482 . . 3 ((𝜑 ∧ (Σ^𝐹) = +∞) → +∞ = (Σ^𝐹))
1410, 13breqtrd 4679 . 2 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
15 simpl 473 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → 𝜑)
16 simpr 477 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → ¬ (Σ^𝐹) = +∞)
1715, 1syl 17 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → 𝑋𝑉)
1815, 4syl 17 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → 𝐹:𝑋⟶(0[,]+∞))
1917, 18sge0repnf 40603 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → ((Σ^𝐹) ∈ ℝ ↔ ¬ (Σ^𝐹) = +∞))
2016, 19mpbird 247 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → (Σ^𝐹) ∈ ℝ)
21 elinel1 3799 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → 𝑥 ∈ 𝒫 (𝑋𝑌))
22 elpwi 4168 . . . . . . . . . . . . . . . 16 (𝑥 ∈ 𝒫 (𝑋𝑌) → 𝑥 ⊆ (𝑋𝑌))
2321, 22syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → 𝑥 ⊆ (𝑋𝑌))
24 inss2 3834 . . . . . . . . . . . . . . . 16 (𝑋𝑌) ⊆ 𝑌
2524a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → (𝑋𝑌) ⊆ 𝑌)
2623, 25sstrd 3613 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → 𝑥𝑌)
2726adantr 481 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → 𝑥𝑌)
28 simpr 477 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
2927, 28sseldd 3604 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑌)
30 fvres 6207 . . . . . . . . . . . 12 (𝑦𝑌 → ((𝐹𝑌)‘𝑦) = (𝐹𝑦))
3129, 30syl 17 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → ((𝐹𝑌)‘𝑦) = (𝐹𝑦))
3231ralrimiva 2966 . . . . . . . . . 10 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → ∀𝑦𝑥 ((𝐹𝑌)‘𝑦) = (𝐹𝑦))
3332sumeq2d 14432 . . . . . . . . 9 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → Σ𝑦𝑥 ((𝐹𝑌)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦))
3433mpteq2ia 4740 . . . . . . . 8 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) = (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
35 inss1 3833 . . . . . . . . . . 11 (𝑋𝑌) ⊆ 𝑋
36 sspwb 4917 . . . . . . . . . . . 12 ((𝑋𝑌) ⊆ 𝑋 ↔ 𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋)
3736biimpi 206 . . . . . . . . . . 11 ((𝑋𝑌) ⊆ 𝑋 → 𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋)
3835, 37ax-mp 5 . . . . . . . . . 10 𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋
39 ssrin 3838 . . . . . . . . . 10 (𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋 → (𝒫 (𝑋𝑌) ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin))
4038, 39ax-mp 5 . . . . . . . . 9 (𝒫 (𝑋𝑌) ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin)
41 mptss 5454 . . . . . . . . 9 ((𝒫 (𝑋𝑌) ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin) → (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
4240, 41ax-mp 5 . . . . . . . 8 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
4334, 42eqsstri 3635 . . . . . . 7 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
44 rnss 5354 . . . . . . 7 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
4543, 44ax-mp 5 . . . . . 6 ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
4645a1i 11 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
474adantr 481 . . . . . . . 8 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐹:𝑋⟶(0[,]+∞))
481adantr 481 . . . . . . . . 9 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝑋𝑉)
49 simpr 477 . . . . . . . . 9 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) ∈ ℝ)
5048, 47, 49sge0rern 40605 . . . . . . . 8 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ¬ +∞ ∈ ran 𝐹)
5147, 50fge0iccico 40587 . . . . . . 7 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐹:𝑋⟶(0[,)+∞))
5251sge0rnre 40581 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
53 ressxr 10083 . . . . . 6 ℝ ⊆ ℝ*
5452, 53syl6ss 3615 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
55 supxrss 12162 . . . . 5 ((ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*) → sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
5646, 54, 55syl2anc 693 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
5748, 2syl 17 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝑋𝑌) ∈ V)
5847, 5syl 17 . . . . . . 7 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
59 nelrnres 39374 . . . . . . . 8 (¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran (𝐹𝑌))
6050, 59syl 17 . . . . . . 7 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ¬ +∞ ∈ ran (𝐹𝑌))
6158, 60fge0iccico 40587 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝐹𝑌):(𝑋𝑌)⟶(0[,)+∞))
6257, 61sge0reval 40589 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝑌)) = sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ))
6348, 51sge0reval 40589 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
6462, 63breq12d 4666 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ((Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹) ↔ sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )))
6556, 64mpbird 247 . . 3 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
6615, 20, 65syl2anc 693 . 2 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
6714, 66pm2.61dan 832 1 (𝜑 → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  ran crn 5115  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  supcsup 8346  cr 9935  0cc0 9936  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  [,]cicc 12178  Σcsu 14416  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  sge0ssre  40614  sge0lefi  40615  sge0lessmpt  40616  sge0resrnlem  40620  sge0le  40624
  Copyright terms: Public domain W3C validator