Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem71 Structured version   Visualization version   GIF version

Theorem fourierdlem71 40394
Description: A periodic piecewise continuous function, possibly undefined on a finite set in each periodic interval, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem71.dmf (𝜑 → dom 𝐹 ⊆ ℝ)
fourierdlem71.f (𝜑𝐹:dom 𝐹⟶ℝ)
fourierdlem71.a (𝜑𝐴 ∈ ℝ)
fourierdlem71.b (𝜑𝐵 ∈ ℝ)
fourierdlem71.altb (𝜑𝐴 < 𝐵)
fourierdlem71.t 𝑇 = (𝐵𝐴)
fourierdlem71.7 (𝜑𝑀 ∈ ℕ)
fourierdlem71.q (𝜑𝑄:(0...𝑀)⟶ℝ)
fourierdlem71.q0 (𝜑 → (𝑄‘0) = 𝐴)
fourierdlem71.10 (𝜑 → (𝑄𝑀) = 𝐵)
fourierdlem71.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem71.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem71.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem71.xpt (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹)
fourierdlem71.fxpt (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
fourierdlem71.i 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
fourierdlem71.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
Assertion
Ref Expression
fourierdlem71 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦)
Distinct variable groups:   𝑥,𝑘   𝑥,𝐴,𝑦   𝐵,𝑘,𝑥   𝑦,𝐵   𝑖,𝐹,𝑥,𝑘   𝑦,𝐹   𝑖,𝐼,𝑥   𝑦,𝐼   𝑥,𝐿   𝑖,𝑀,𝑥,𝑘   𝑄,𝑖,𝑥,𝑘   𝑦,𝑄   𝑥,𝑅   𝑇,𝑘,𝑥   𝑦,𝑇   𝜑,𝑖,𝑥,𝑘   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑘)   𝐵(𝑖)   𝑅(𝑦,𝑖,𝑘)   𝑇(𝑖)   𝐸(𝑥,𝑦,𝑖,𝑘)   𝐼(𝑘)   𝐿(𝑦,𝑖,𝑘)   𝑀(𝑦)

Proof of Theorem fourierdlem71
Dummy variables 𝑤 𝑏 𝑡 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfi 8235 . . . 4 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} ∈ Fin
21a1i 11 . . 3 (𝜑 → {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} ∈ Fin)
3 fourierdlem71.f . . . . . . 7 (𝜑𝐹:dom 𝐹⟶ℝ)
43adantr 481 . . . . . 6 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝐹:dom 𝐹⟶ℝ)
5 simpl 473 . . . . . . 7 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝜑)
6 simpr 477 . . . . . . . 8 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼})
7 fourierdlem71.q . . . . . . . . . . . 12 (𝜑𝑄:(0...𝑀)⟶ℝ)
8 ovex 6678 . . . . . . . . . . . . 13 (0...𝑀) ∈ V
98a1i 11 . . . . . . . . . . . 12 (𝜑 → (0...𝑀) ∈ V)
10 fex 6490 . . . . . . . . . . . 12 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ V) → 𝑄 ∈ V)
117, 9, 10syl2anc 693 . . . . . . . . . . 11 (𝜑𝑄 ∈ V)
12 rnexg 7098 . . . . . . . . . . 11 (𝑄 ∈ V → ran 𝑄 ∈ V)
13 inex1g 4801 . . . . . . . . . . 11 (ran 𝑄 ∈ V → (ran 𝑄 ∩ dom 𝐹) ∈ V)
1411, 12, 133syl 18 . . . . . . . . . 10 (𝜑 → (ran 𝑄 ∩ dom 𝐹) ∈ V)
1514adantr 481 . . . . . . . . 9 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → (ran 𝑄 ∩ dom 𝐹) ∈ V)
16 fourierdlem71.i . . . . . . . . . . . . . 14 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
17 ovex 6678 . . . . . . . . . . . . . . 15 (0..^𝑀) ∈ V
1817mptex 6486 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ V
1916, 18eqeltri 2697 . . . . . . . . . . . . 13 𝐼 ∈ V
2019rnex 7100 . . . . . . . . . . . 12 ran 𝐼 ∈ V
2120a1i 11 . . . . . . . . . . 11 (𝜑 → ran 𝐼 ∈ V)
22 uniexg 6955 . . . . . . . . . . 11 (ran 𝐼 ∈ V → ran 𝐼 ∈ V)
2321, 22syl 17 . . . . . . . . . 10 (𝜑 ran 𝐼 ∈ V)
2423adantr 481 . . . . . . . . 9 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → ran 𝐼 ∈ V)
25 uniprg 4450 . . . . . . . . 9 (((ran 𝑄 ∩ dom 𝐹) ∈ V ∧ ran 𝐼 ∈ V) → {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} = ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
2615, 24, 25syl2anc 693 . . . . . . . 8 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} = ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
276, 26eleqtrd 2703 . . . . . . 7 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
28 elinel2 3800 . . . . . . . . 9 (𝑥 ∈ (ran 𝑄 ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹)
2928adantl 482 . . . . . . . 8 (((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) ∧ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹)
30 simpll 790 . . . . . . . . 9 (((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝜑)
31 elunnel1 3754 . . . . . . . . . 10 ((𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ran 𝐼)
3231adantll 750 . . . . . . . . 9 (((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ran 𝐼)
3316funmpt2 5927 . . . . . . . . . . . . 13 Fun 𝐼
34 elunirn 6509 . . . . . . . . . . . . 13 (Fun 𝐼 → (𝑥 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖)))
3533, 34ax-mp 5 . . . . . . . . . . . 12 (𝑥 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖))
3635biimpi 206 . . . . . . . . . . 11 (𝑥 ran 𝐼 → ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖))
3736adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ran 𝐼) → ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖))
38 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ dom 𝐼𝑖 ∈ dom 𝐼)
39 ovex 6678 . . . . . . . . . . . . . . . . . . . 20 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V
4039, 16dmmpti 6023 . . . . . . . . . . . . . . . . . . 19 dom 𝐼 = (0..^𝑀)
4138, 40syl6eleq 2711 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ dom 𝐼𝑖 ∈ (0..^𝑀))
4241adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝑖 ∈ (0..^𝑀))
4339a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V)
4416fvmpt2 6291 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
4542, 43, 44syl2anc 693 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
46 fourierdlem71.fcn . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
47 cncff 22696 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
48 fdm 6051 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
4946, 47, 483syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
5041, 49sylan2 491 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
51 ssdmres 5420 . . . . . . . . . . . . . . . . 17 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
5250, 51sylibr 224 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
5345, 52eqsstrd 3639 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) ⊆ dom 𝐹)
54533adant3 1081 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)) → (𝐼𝑖) ⊆ dom 𝐹)
55 simp3 1063 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)) → 𝑥 ∈ (𝐼𝑖))
5654, 55sseldd 3604 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)) → 𝑥 ∈ dom 𝐹)
57563exp 1264 . . . . . . . . . . . 12 (𝜑 → (𝑖 ∈ dom 𝐼 → (𝑥 ∈ (𝐼𝑖) → 𝑥 ∈ dom 𝐹)))
5857adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ran 𝐼) → (𝑖 ∈ dom 𝐼 → (𝑥 ∈ (𝐼𝑖) → 𝑥 ∈ dom 𝐹)))
5958rexlimdv 3030 . . . . . . . . . 10 ((𝜑𝑥 ran 𝐼) → (∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖) → 𝑥 ∈ dom 𝐹))
6037, 59mpd 15 . . . . . . . . 9 ((𝜑𝑥 ran 𝐼) → 𝑥 ∈ dom 𝐹)
6130, 32, 60syl2anc 693 . . . . . . . 8 (((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹)
6229, 61pm2.61dan 832 . . . . . . 7 ((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) → 𝑥 ∈ dom 𝐹)
635, 27, 62syl2anc 693 . . . . . 6 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝑥 ∈ dom 𝐹)
644, 63ffvelrnd 6360 . . . . 5 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → (𝐹𝑥) ∈ ℝ)
6564recnd 10068 . . . 4 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → (𝐹𝑥) ∈ ℂ)
6665abscld 14175 . . 3 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → (abs‘(𝐹𝑥)) ∈ ℝ)
67 simpr 477 . . . . . . 7 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = (ran 𝑄 ∩ dom 𝐹))
68 fzfid 12772 . . . . . . . . . 10 (𝜑 → (0...𝑀) ∈ Fin)
69 rnffi 39356 . . . . . . . . . 10 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ Fin) → ran 𝑄 ∈ Fin)
707, 68, 69syl2anc 693 . . . . . . . . 9 (𝜑 → ran 𝑄 ∈ Fin)
71 infi 8184 . . . . . . . . 9 (ran 𝑄 ∈ Fin → (ran 𝑄 ∩ dom 𝐹) ∈ Fin)
7270, 71syl 17 . . . . . . . 8 (𝜑 → (ran 𝑄 ∩ dom 𝐹) ∈ Fin)
7372adantr 481 . . . . . . 7 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → (ran 𝑄 ∩ dom 𝐹) ∈ Fin)
7467, 73eqeltrd 2701 . . . . . 6 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 ∈ Fin)
75 simpll 790 . . . . . . . 8 (((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) ∧ 𝑥𝑤) → 𝜑)
76 simpr 477 . . . . . . . . . 10 ((𝑤 = (ran 𝑄 ∩ dom 𝐹) ∧ 𝑥𝑤) → 𝑥𝑤)
77 simpl 473 . . . . . . . . . 10 ((𝑤 = (ran 𝑄 ∩ dom 𝐹) ∧ 𝑥𝑤) → 𝑤 = (ran 𝑄 ∩ dom 𝐹))
7876, 77eleqtrd 2703 . . . . . . . . 9 ((𝑤 = (ran 𝑄 ∩ dom 𝐹) ∧ 𝑥𝑤) → 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹))
7978adantll 750 . . . . . . . 8 (((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) ∧ 𝑥𝑤) → 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹))
803adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝐹:dom 𝐹⟶ℝ)
8128adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹)
8280, 81ffvelrnd 6360 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → (𝐹𝑥) ∈ ℝ)
8382recnd 10068 . . . . . . . . 9 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → (𝐹𝑥) ∈ ℂ)
8483abscld 14175 . . . . . . . 8 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → (abs‘(𝐹𝑥)) ∈ ℝ)
8575, 79, 84syl2anc 693 . . . . . . 7 (((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) ∧ 𝑥𝑤) → (abs‘(𝐹𝑥)) ∈ ℝ)
8685ralrimiva 2966 . . . . . 6 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∀𝑥𝑤 (abs‘(𝐹𝑥)) ∈ ℝ)
87 fimaxre3 10970 . . . . . 6 ((𝑤 ∈ Fin ∧ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
8874, 86, 87syl2anc 693 . . . . 5 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
8988adantlr 751 . . . 4 (((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) ∧ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
90 simpll 790 . . . . 5 (((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝜑)
91 neqne 2802 . . . . . . 7 𝑤 = (ran 𝑄 ∩ dom 𝐹) → 𝑤 ≠ (ran 𝑄 ∩ dom 𝐹))
92 elprn1 39865 . . . . . . 7 ((𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} ∧ 𝑤 ≠ (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = ran 𝐼)
9391, 92sylan2 491 . . . . . 6 ((𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = ran 𝐼)
9493adantll 750 . . . . 5 (((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = ran 𝐼)
95 fzofi 12773 . . . . . . . 8 (0..^𝑀) ∈ Fin
9616rnmptfi 39351 . . . . . . . 8 ((0..^𝑀) ∈ Fin → ran 𝐼 ∈ Fin)
9795, 96ax-mp 5 . . . . . . 7 ran 𝐼 ∈ Fin
9897a1i 11 . . . . . 6 ((𝜑𝑤 = ran 𝐼) → ran 𝐼 ∈ Fin)
993adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ran 𝐼) → 𝐹:dom 𝐹⟶ℝ)
10099, 60ffvelrnd 6360 . . . . . . . . 9 ((𝜑𝑥 ran 𝐼) → (𝐹𝑥) ∈ ℝ)
101100recnd 10068 . . . . . . . 8 ((𝜑𝑥 ran 𝐼) → (𝐹𝑥) ∈ ℂ)
102101adantlr 751 . . . . . . 7 (((𝜑𝑤 = ran 𝐼) ∧ 𝑥 ran 𝐼) → (𝐹𝑥) ∈ ℂ)
103102abscld 14175 . . . . . 6 (((𝜑𝑤 = ran 𝐼) ∧ 𝑥 ran 𝐼) → (abs‘(𝐹𝑥)) ∈ ℝ)
10439, 16fnmpti 6022 . . . . . . . . . . 11 𝐼 Fn (0..^𝑀)
105 fvelrnb 6243 . . . . . . . . . . 11 (𝐼 Fn (0..^𝑀) → (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡))
106104, 105ax-mp 5 . . . . . . . . . 10 (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
107106biimpi 206 . . . . . . . . 9 (𝑡 ∈ ran 𝐼 → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
108107adantl 482 . . . . . . . 8 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
1097adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
110 elfzofz 12485 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
111110adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
112109, 111ffvelrnd 6360 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
113 fzofzp1 12565 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
114113adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
115109, 114ffvelrnd 6360 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
116 fourierdlem71.l . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
117 fourierdlem71.r . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
118112, 115, 46, 116, 117cncfioobd 40110 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏)
1191183adant3 1081 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏)
120 fvres 6207 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹𝑥))
121120fveq2d 6195 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = (abs‘(𝐹𝑥)))
122121breq1d 4663 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹𝑥)) ≤ 𝑏))
123122adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹𝑥)) ≤ 𝑏))
124123ralbidva 2985 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏))
125124rexbidv 3052 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏))
1261253adant3 1081 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏))
12739, 44mpan2 707 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0..^𝑀) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
128 id 22 . . . . . . . . . . . . . . . . 17 ((𝐼𝑖) = 𝑡 → (𝐼𝑖) = 𝑡)
129127, 128sylan9req 2677 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = 𝑡)
1301293adant1 1079 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = 𝑡)
131130raleqdv 3144 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏))
132131rexbidv 3052 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏))
133126, 132bitrd 268 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏))
134119, 133mpbid 222 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)
1351343exp 1264 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)))
136135adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ ran 𝐼) → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)))
137136rexlimdv 3030 . . . . . . . 8 ((𝜑𝑡 ∈ ran 𝐼) → (∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏))
138108, 137mpd 15 . . . . . . 7 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)
139138adantlr 751 . . . . . 6 (((𝜑𝑤 = ran 𝐼) ∧ 𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)
140 eqimss 3657 . . . . . . 7 (𝑤 = ran 𝐼𝑤 ran 𝐼)
141140adantl 482 . . . . . 6 ((𝜑𝑤 = ran 𝐼) → 𝑤 ran 𝐼)
14298, 103, 139, 141ssfiunibd 39523 . . . . 5 ((𝜑𝑤 = ran 𝐼) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
14390, 94, 142syl2anc 693 . . . 4 (((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
14489, 143pm2.61dan 832 . . 3 ((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
145 simpr 477 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ran 𝑄)
146 elinel2 3800 . . . . . . . . . 10 (𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹)
147146ad2antlr 763 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ dom 𝐹)
148145, 147elind 3798 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹))
149 elun1 3780 . . . . . . . 8 (𝑥 ∈ (ran 𝑄 ∩ dom 𝐹) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
150148, 149syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
151 fourierdlem71.7 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
152151ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑀 ∈ ℕ)
1537ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
154 elinel1 3799 . . . . . . . . . . . . . 14 (𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹) → 𝑥 ∈ (𝐴[,]𝐵))
155154adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝑥 ∈ (𝐴[,]𝐵))
156 fourierdlem71.q0 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄‘0) = 𝐴)
157156eqcomd 2628 . . . . . . . . . . . . . . 15 (𝜑𝐴 = (𝑄‘0))
158157adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝐴 = (𝑄‘0))
159 fourierdlem71.10 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄𝑀) = 𝐵)
160159eqcomd 2628 . . . . . . . . . . . . . . 15 (𝜑𝐵 = (𝑄𝑀))
161160adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝐵 = (𝑄𝑀))
162158, 161oveq12d 6668 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
163155, 162eleqtrd 2703 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)))
164163adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)))
165 simpr 477 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → ¬ 𝑥 ∈ ran 𝑄)
166 fveq2 6191 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
167166breq1d 4663 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝑄𝑘) < 𝑥 ↔ (𝑄𝑗) < 𝑥))
168167cbvrabv 3199 . . . . . . . . . . . 12 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑥} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑥}
169168supeq1i 8353 . . . . . . . . . . 11 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑥}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑥}, ℝ, < )
170152, 153, 164, 165, 169fourierdlem25 40349 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
17141ad2antrl 764 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → 𝑖 ∈ (0..^𝑀))
172 simprr 796 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → 𝑥 ∈ (𝐼𝑖))
173171, 127syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
174172, 173eleqtrd 2703 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
175171, 174jca 554 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
176 id 22 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0..^𝑀))
177176, 40syl6eleqr 2712 . . . . . . . . . . . . . . 15 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ dom 𝐼)
178177ad2antrl 764 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑖 ∈ dom 𝐼)
179 simprr 796 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
180127eqcomd 2628 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
181180ad2antrl 764 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
182179, 181eleqtrd 2703 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ (𝐼𝑖))
183178, 182jca 554 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)))
184175, 183impbida 877 . . . . . . . . . . . 12 (𝜑 → ((𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)) ↔ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
185184rexbidv2 3048 . . . . . . . . . . 11 (𝜑 → (∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
186185ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → (∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
187170, 186mpbird 247 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖))
188187, 35sylibr 224 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑥 ran 𝐼)
189 elun2 3781 . . . . . . . 8 (𝑥 ran 𝐼𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
190188, 189syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
191150, 190pm2.61dan 832 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
192191ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
193 dfss3 3592 . . . . 5 (((𝐴[,]𝐵) ∩ dom 𝐹) ⊆ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼) ↔ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
194192, 193sylibr 224 . . . 4 (𝜑 → ((𝐴[,]𝐵) ∩ dom 𝐹) ⊆ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
19514, 23, 25syl2anc 693 . . . 4 (𝜑 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} = ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
196194, 195sseqtr4d 3642 . . 3 (𝜑 → ((𝐴[,]𝐵) ∩ dom 𝐹) ⊆ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼})
1972, 66, 144, 196ssfiunibd 39523 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦)
198 nfv 1843 . . . . . 6 𝑥𝜑
199 nfra1 2941 . . . . . 6 𝑥𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦
200198, 199nfan 1828 . . . . 5 𝑥(𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦)
201 fourierdlem71.dmf . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 ⊆ ℝ)
202201sselda 3603 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐹) → 𝑥 ∈ ℝ)
203 fourierdlem71.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ)
204203adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ dom 𝐹) → 𝐵 ∈ ℝ)
205204, 202resubcld 10458 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ dom 𝐹) → (𝐵𝑥) ∈ ℝ)
206 fourierdlem71.t . . . . . . . . . . . . . . . . . . 19 𝑇 = (𝐵𝐴)
207 fourierdlem71.a . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ ℝ)
208203, 207resubcld 10458 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵𝐴) ∈ ℝ)
209206, 208syl5eqel 2705 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ∈ ℝ)
210209adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ dom 𝐹) → 𝑇 ∈ ℝ)
211 fourierdlem71.altb . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 < 𝐵)
212207, 203posdifd 10614 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
213211, 212mpbid 222 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 < (𝐵𝐴))
214213, 206syl6breqr 4695 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 𝑇)
215214gt0ne0d 10592 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ≠ 0)
216215adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ dom 𝐹) → 𝑇 ≠ 0)
217205, 210, 216redivcld 10853 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ dom 𝐹) → ((𝐵𝑥) / 𝑇) ∈ ℝ)
218217flcld 12599 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ dom 𝐹) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)
219218zred 11482 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ dom 𝐹) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℝ)
220219, 210remulcld 10070 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐹) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ ℝ)
221202, 220readdcld 10069 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐹) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ)
222 fourierdlem71.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
223222fvmpt2 6291 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ) → (𝐸𝑥) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
224202, 221, 223syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
225224fveq2d 6195 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹‘(𝐸𝑥)) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
226 fvex 6201 . . . . . . . . . . . 12 (⌊‘((𝐵𝑥) / 𝑇)) ∈ V
227 eleq1 2689 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑘 ∈ ℤ ↔ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ))
228227anbi2d 740 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) ↔ ((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)))
229 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
230229oveq2d 6666 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
231230fveq2d 6195 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
232231eqeq1d 2624 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
233228, 232imbi12d 334 . . . . . . . . . . . 12 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → ((((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ (((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝐹𝑥))))
234 fourierdlem71.fxpt . . . . . . . . . . . 12 (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
235226, 233, 234vtocl 3259 . . . . . . . . . . 11 (((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝐹𝑥))
236218, 235mpdan 702 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝐹𝑥))
237225, 236eqtr2d 2657 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹‘(𝐸𝑥)))
238237fveq2d 6195 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐹) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝐸𝑥))))
239238adantlr 751 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝐸𝑥))))
240 fveq2 6191 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
241240fveq2d 6195 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝑤)))
242241breq1d 4663 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((abs‘(𝐹𝑥)) ≤ 𝑦 ↔ (abs‘(𝐹𝑤)) ≤ 𝑦))
243242cbvralv 3171 . . . . . . . . . 10 (∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦 ↔ ∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑤)) ≤ 𝑦)
244243biimpi 206 . . . . . . . . 9 (∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦 → ∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑤)) ≤ 𝑦)
245244ad2antlr 763 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → ∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑤)) ≤ 𝑦)
246 iocssicc 12261 . . . . . . . . . . 11 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
247207adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐹) → 𝐴 ∈ ℝ)
248211adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐹) → 𝐴 < 𝐵)
249 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦𝑥 = 𝑦)
250 oveq2 6658 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝐵𝑥) = (𝐵𝑦))
251250oveq1d 6665 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑦) / 𝑇))
252251fveq2d 6195 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑦) / 𝑇)))
253252oveq1d 6665 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇))
254249, 253oveq12d 6668 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))
255254cbvmptv 4750 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))
256222, 255eqtri 2644 . . . . . . . . . . . . 13 𝐸 = (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))
257247, 204, 248, 206, 256fourierdlem4 40328 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐹) → 𝐸:ℝ⟶(𝐴(,]𝐵))
258257, 202ffvelrnd 6360 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ (𝐴(,]𝐵))
259246, 258sseldi 3601 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ (𝐴[,]𝐵))
260230eleq1d 2686 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → ((𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹 ↔ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹))
261228, 260imbi12d 334 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → ((((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹) ↔ (((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹)))
262 fourierdlem71.xpt . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹)
263226, 261, 262vtocl 3259 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹)
264218, 263mpdan 702 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐹) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹)
265224, 264eqeltrd 2701 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ dom 𝐹)
266259, 265elind 3798 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ ((𝐴[,]𝐵) ∩ dom 𝐹))
267266adantlr 751 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ ((𝐴[,]𝐵) ∩ dom 𝐹))
268 fveq2 6191 . . . . . . . . . . 11 (𝑤 = (𝐸𝑥) → (𝐹𝑤) = (𝐹‘(𝐸𝑥)))
269268fveq2d 6195 . . . . . . . . . 10 (𝑤 = (𝐸𝑥) → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘(𝐸𝑥))))
270269breq1d 4663 . . . . . . . . 9 (𝑤 = (𝐸𝑥) → ((abs‘(𝐹𝑤)) ≤ 𝑦 ↔ (abs‘(𝐹‘(𝐸𝑥))) ≤ 𝑦))
271270rspccva 3308 . . . . . . . 8 ((∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑤)) ≤ 𝑦 ∧ (𝐸𝑥) ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → (abs‘(𝐹‘(𝐸𝑥))) ≤ 𝑦)
272245, 267, 271syl2anc 693 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (abs‘(𝐹‘(𝐸𝑥))) ≤ 𝑦)
273239, 272eqbrtrd 4675 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (abs‘(𝐹𝑥)) ≤ 𝑦)
274273ex 450 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) → (𝑥 ∈ dom 𝐹 → (abs‘(𝐹𝑥)) ≤ 𝑦))
275200, 274ralrimi 2957 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) → ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦)
276275ex 450 . . 3 (𝜑 → (∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦 → ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦))
277276reximdv 3016 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦))
278197, 277mpd 15 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cun 3572  cin 3573  wss 3574  {cpr 4179   cuni 4436   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  cres 5116  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  supcsup 8346  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  cz 11377  (,)cioo 12175  (,]cioc 12176  [,]cicc 12178  ...cfz 12326  ..^cfzo 12465  cfl 12591  abscabs 13974  cnccncf 22679   lim climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630
This theorem is referenced by:  fourierdlem94  40417  fourierdlem113  40436
  Copyright terms: Public domain W3C validator